Suppr超能文献

基于规则的方法和人工神经网络对伴有间质性疾病的正常和异常肺部进行分类。

Classification of normal and abnormal lungs with interstitial diseases by rule-based method and artificial neural networks.

作者信息

Katsuragawa S, Doi K, MacMahon H, Monnier-Cholley L, Ishida T, Kobayashi T

机构信息

Department of Radiology, Iwate Medical University, Morioka, Japan.

出版信息

J Digit Imaging. 1997 Aug;10(3):108-14. doi: 10.1007/BF03168597.

Abstract

We devised an automated classification scheme by using the rule-based method plus artificial neural networks (ANN) for distinction between normal and abnormal lungs with interstitial disease in digital chest radiographs. Four measures used in the classification scheme are determined from the texture and geometric-pattern feature analyses. The rms variation and the first moment of the power spectrum of lung patterns are determined as measures for the texture analysis. In addition, the total area of nodular opacities and the total length of linear opacities are determined as measures for the geometric-pattern feature analysis. In our classification scheme with these measures, we identify obviously normal and abnormal cases first by the rule-based method and then ANN is applied for the remaining difficult cases. The rule-based plus ANN method provided a sensitivity of 0.926 at the specificity of 0.900, which was considerably improved compared to performance of either the rule-based method alone or ANNs alone.

摘要

我们设计了一种自动分类方案,通过使用基于规则的方法加上人工神经网络(ANN),以区分数字化胸部X光片中正常肺部与患有间质性疾病的异常肺部。分类方案中使用的四项指标是通过纹理和几何图案特征分析确定的。肺纹理模式的均方根变化和功率谱的一阶矩被确定为纹理分析的指标。此外,结节状阴影的总面积和线状阴影的总长度被确定为几何图案特征分析的指标。在我们采用这些指标的分类方案中,首先通过基于规则的方法识别明显正常和异常的病例,然后将人工神经网络应用于其余难以判断的病例。基于规则加人工神经网络的方法在特异性为0.900时的灵敏度为0.926,与单独使用基于规则的方法或单独使用人工神经网络的性能相比有了显著提高。

相似文献

引用本文的文献

1
A holistic overview of deep learning approach in medical imaging.
Multimed Syst. 2022;28(3):881-914. doi: 10.1007/s00530-021-00884-5. Epub 2022 Jan 21.
2
Computer-Aided Diagnosis for Chest Radiographs in Intensive Care.
J Pediatr Intensive Care. 2016 Sep;5(3):113-121. doi: 10.1055/s-0035-1569995. Epub 2015 Dec 15.
3
Deep learning in medical imaging and radiation therapy.
Med Phys. 2019 Jan;46(1):e1-e36. doi: 10.1002/mp.13264. Epub 2018 Nov 20.

本文引用的文献

5
An "intelligent" workstation for computer-aided diagnosis.
Radiographics. 1993 May;13(3):647-56. doi: 10.1148/radiographics.13.3.8316671.
7
Notes: Feasibility of classifying disseminated pulmonary diseases based on their Fourier spectra.
Invest Radiol. 1973 Sep-Oct;8(5):345-9. doi: 10.1097/00004424-197309000-00008.
10
ROC methodology in radiologic imaging.
Invest Radiol. 1986 Sep;21(9):720-33. doi: 10.1097/00004424-198609000-00009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验