Suppr超能文献

真核生物GTP酶对原核生物孢子形成和运动缺陷的互补作用。

Complementation of sporulation and motility defects in a prokaryote by a eukaryotic GTPase.

作者信息

Hartzell P L

机构信息

Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA.

出版信息

Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9881-6. doi: 10.1073/pnas.94.18.9881.

Abstract

The complex prokaryote, Myxococcus xanthus, undergoes a program of multicellular development when starved for nutrients, culminating in sporulation. M. xanthus makes MglA, a 22-kDa, soluble protein that is required for both multicellular development and gliding motility. MglA is similar in sequence to the Saccharomyces cerevisiae SAR1 protein, a member of the Ras/Rab/Rho superfamily of small eukaryotic GTPases. The SAR1 gene, when integrated into the M. xanthus genome, complements the sporulation defect of a DeltamglA strain. A forward, second-site mutation on the M. xanthus chromosome, rpm, in combination with SAR1, restores fruiting body morphogenesis and gliding motility to a DeltamglA strain. The result that the rpm mutation suppresses the substitution of SAR1 for mglA suggests that Sar1p interacts with other M. xanthus proteins to control the motility-dependent aggregation of cells during development.

摘要

复杂的原核生物黄色粘球菌(Myxococcus xanthus)在缺乏营养时会经历一个多细胞发育过程,最终形成孢子。黄色粘球菌产生MglA,这是一种22 kDa的可溶性蛋白质,多细胞发育和滑行运动都需要它。MglA在序列上与酿酒酵母(Saccharomyces cerevisiae)的SAR1蛋白相似,后者是小真核GTP酶的Ras/Rab/Rho超家族成员。当SAR1基因整合到黄色粘球菌基因组中时,可弥补ΔmglA菌株的孢子形成缺陷。黄色粘球菌染色体上的一个正向第二位点突变rpm与SAR1共同作用,可恢复ΔmglA菌株的子实体形态发生和滑行运动。rpm突变抑制了用SAR1替代mglA的结果,这表明Sar1p与黄色粘球菌的其他蛋白质相互作用,以控制发育过程中细胞的运动依赖性聚集。

相似文献

1
Complementation of sporulation and motility defects in a prokaryote by a eukaryotic GTPase.
Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9881-6. doi: 10.1073/pnas.94.18.9881.
2
Effects of site-directed mutagenesis of mglA on motility and swarming of Myxococcus xanthus.
BMC Microbiol. 2010 Nov 18;10:295. doi: 10.1186/1471-2180-10-295.
5
MglC, a Paralog of Myxococcus xanthus GTPase-Activating Protein MglB, Plays a Divergent Role in Motility Regulation.
J Bacteriol. 2015 Nov 16;198(3):510-20. doi: 10.1128/JB.00548-15. Print 2016 Feb 1.
6
Localization of MglA, an essential gliding motility protein in Myxococcus xanthus.
Cytoskeleton (Hoboken). 2010 May;67(5):322-37. doi: 10.1002/cm.20447.
7
The polar Ras-like GTPase MglA activates type IV pilus via SgmX to enable twitching motility in .
Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):28366-28373. doi: 10.1073/pnas.2002783117. Epub 2020 Oct 22.
8
Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA.
EMBO J. 2010 Jan 20;29(2):315-26. doi: 10.1038/emboj.2009.356. Epub 2009 Dec 3.
9
Function of MglA, a 22-kilodalton protein essential for gliding in Myxococcus xanthus.
J Bacteriol. 1991 Dec;173(23):7615-24. doi: 10.1128/jb.173.23.7615-7624.1991.

引用本文的文献

1
Allosteric regulation of a prokaryotic small Ras-like GTPase contributes to cell polarity oscillations in bacterial motility.
PLoS Biol. 2019 Sep 27;17(9):e3000459. doi: 10.1371/journal.pbio.3000459. eCollection 2019 Sep.
2
Engineering Pseudochelin Production in Myxococcus xanthus.
Appl Environ Microbiol. 2018 Oct 30;84(22). doi: 10.1128/AEM.01789-18. Print 2018 Nov 15.
3
Molecular paleontology and complexity in the last eukaryotic common ancestor.
Crit Rev Biochem Mol Biol. 2013 Jul-Aug;48(4):373-96. doi: 10.3109/10409238.2013.821444.
4
Chemosensory signaling controls motility and subcellular polarity in Myxococcus xanthus.
Curr Opin Microbiol. 2012 Dec;15(6):751-7. doi: 10.1016/j.mib.2012.10.005. Epub 2012 Nov 8.
5
Uncovering the mystery of gliding motility in the myxobacteria.
Annu Rev Genet. 2011;45:21-39. doi: 10.1146/annurev-genet-110410-132547. Epub 2011 Sep 9.
6
Effects of site-directed mutagenesis of mglA on motility and swarming of Myxococcus xanthus.
BMC Microbiol. 2010 Nov 18;10:295. doi: 10.1186/1471-2180-10-295.
7
Cell polarity/motility in bacteria: closer to eukaryotes than expected?
EMBO J. 2010 Jul 21;29(14):2258-9. doi: 10.1038/emboj.2010.144.
8
Gliding motility revisited: how do the myxobacteria move without flagella?
Microbiol Mol Biol Rev. 2010 Jun;74(2):229-49. doi: 10.1128/MMBR.00043-09.
9
Localization of MglA, an essential gliding motility protein in Myxococcus xanthus.
Cytoskeleton (Hoboken). 2010 May;67(5):322-37. doi: 10.1002/cm.20447.
10
Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA.
EMBO J. 2010 Jan 20;29(2):315-26. doi: 10.1038/emboj.2009.356. Epub 2009 Dec 3.

本文引用的文献

1
Recent advances in the social and developmental biology of the myxobacteria.
Microbiol Rev. 1996 Mar;60(1):70-102. doi: 10.1128/mr.60.1.70-102.1996.
2
Propagation of traveling waves in excitable media.
Genes Dev. 1996 Sep 15;10(18):2237-50. doi: 10.1101/gad.10.18.2237.
3
The Ras superfamily of GTPases.
FASEB J. 1996 Apr;10(5):625-30. doi: 10.1096/fasebj.10.5.8621061.
4
Genetics of gliding motility and development in Myxococcus xanthus.
Arch Microbiol. 1995 Nov;164(5):309-23. doi: 10.1007/BF02529977.
5
The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces.
Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3378-82. doi: 10.1073/pnas.90.8.3378.
6
Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum.
Science. 1993 Mar 5;259(5100):1466-8. doi: 10.1126/science.8451644.
9
Molecular analysis of SAR1-related cDNAs from a mouse pituitary cell line.
FEBS Lett. 1993 Dec 13;335(3):380-5. doi: 10.1016/0014-5793(93)80423-r.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验