Suppr超能文献

Neurotensin and dopamine D2 activation oppositely regulate the same K+ conductance in rat midbrain dopaminergic neurons.

作者信息

Farkas R H, Chien P Y, Nakajima S, Nakajima Y

机构信息

Department of Anatomy and Cell Biology, University of Illinois at Chicago, College of Medicine, 60612, USA.

出版信息

Neurosci Lett. 1997 Aug 1;231(1):21-4. doi: 10.1016/s0304-3940(97)00530-2.

Abstract

Midbrain dopaminergic neurons are excited by neurotensin (NT) and inhibited by dopamine. Interactions between these neurotransmitters have been reported, but no interaction has yet been identified at the level of ionic and signal transduction mechanisms. Using the whole-cell clamp technique, we examined the interaction of NT and quinpirole (QUIN) (a dopamine D2 agonist) on midbrain ventral tegmental area neurons cultured from the rat. We found that NT could inhibit the K+ conductance induced by QUIN. By interrupting normal signal transduction with the non-hydrolyzable GTP analogue GTPgammaS, we found that this interaction occurred downstream of the membrane neurotransmitter receptors. Similar interactions were observed between QUIN and tachykinin or metabotropic glutamate agonists.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验