Suppr超能文献

细胞衰老的多种途径:端粒酶抑制因子的作用

Multiple pathways to cellular senescence: role of telomerase repressors.

作者信息

Oshimura M, Barrett J C

机构信息

Department of Molecular and Cell Genetics, School of Life Sciences, Faculty of Medicine, Tottori University, Japan.

出版信息

Eur J Cancer. 1997 Apr;33(5):710-5. doi: 10.1016/S0959-8049(97)00090-7.

Abstract

Telomeres progressively shorten with age in somatic cells in culture and in vivo because DNA replication results in the loss of sequences at the 5' ends of double-stranded DNA. Whereas somatic cells do not express the enzyme, telomerase, which adds repeated telomere sequences to chromosome ends, telomerase activity is detected in immortalised and tumour cells in vitro and in primary tumour tissues. This represents an important difference between normal cells and cancer cells, suggesting that telomere shortening causes cellular senescence. Hybrids between immortal cells and normal cells senesce, indicating that immortal cells have lost, mutated or inactivated genes that are required for the programme of senescence in normal cells. Genes involved in the senescence programme have been mapped to over ten different genetic loci using microcell fusion to introduce human chromosomes and restore the senescence programme. Multiple pathways of cellular senescence have also been demonstrated by chromosome transfer, indicating that the functions of the mapped senescence genes are probably different. One possibility is that one or more of these senescence genes may suppress telomerase activity in immortal cells, resulting in telomere shortening and cellular senescence. To test this hypothesis, telomerase activity and the length of terminal restriction fragments (TRFs) have been examined in microcell hybrids. Re-introduction of a normal chromosome 3 into the renal cell carcinoma cell line RCC23, which has the short arm of chromosome 3, restored cellular senescence. The loss of indefinite growth potential was associated with the loss of telomerase activity and shortening of telomeres in the RCC cells containing the introduced chromosome 3. However, microcell hybrids that escaped from senescence and microcell hybrids with an introduced chromosome 7 or 11 maintained telomere lengths and telomerase activity similar to the parental RCC23. Thus, restoration of cellular senescence by chromosome 3 is associated with repression of telomerase function in RCC cells. This evidence suggests that telomerase suppression is one of several pathways involved in immortalisation.

摘要

在体外培养和体内的体细胞中,端粒会随着年龄的增长而逐渐缩短,这是因为DNA复制会导致双链DNA 5'端的序列丢失。体细胞不表达端粒酶,端粒酶可将重复的端粒序列添加到染色体末端,但在体外永生化细胞和肿瘤细胞以及原发性肿瘤组织中可检测到端粒酶活性。这代表了正常细胞与癌细胞之间的一个重要差异,表明端粒缩短会导致细胞衰老。永生化细胞与正常细胞的杂交体会衰老,这表明永生化细胞已经丢失、突变或使正常细胞衰老程序所需的基因失活。利用微细胞融合技术引入人类染色体并恢复衰老程序,已将参与衰老程序的基因定位到十多个不同的遗传位点。通过染色体转移也证明了细胞衰老的多种途径,这表明已定位的衰老基因的功能可能不同。一种可能性是,这些衰老基因中的一个或多个可能会抑制永生化细胞中的端粒酶活性,导致端粒缩短和细胞衰老。为了验证这一假设,已在微细胞杂交体中检测了端粒酶活性和末端限制片段(TRF)的长度。将正常的3号染色体重新导入具有3号染色体短臂的肾癌细胞系RCC23中,恢复了细胞衰老。含有导入的3号染色体的RCC细胞中,无限生长潜能的丧失与端粒酶活性的丧失和端粒缩短有关。然而,从衰老中逃脱的微细胞杂交体以及导入了7号或11号染色体的微细胞杂交体维持了与亲本RCC23相似的端粒长度和端粒酶活性。因此,3号染色体恢复细胞衰老与RCC细胞中端粒酶功能的抑制有关。这一证据表明,端粒酶抑制是参与永生化的几种途径之一。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验