Suppr超能文献

噪声协方差合并的脑磁图-多信号分类算法:一种耐受背景脑电活动影响的多偶极子估计方法。

Noise covariance incorporated MEG-MUSIC algorithm: a method for multiple-dipole estimation tolerant of the influence of background brain activity.

作者信息

Sekihara K, Poeppel D, Marantz A, Koizumi H, Miyashita Y

机构信息

Mind Articulation Project, JST, Tokyo, Japan.

出版信息

IEEE Trans Biomed Eng. 1997 Sep;44(9):839-47. doi: 10.1109/10.623053.

Abstract

This paper proposes a method of localizing multiple current dipoles from spatio-temporal biomagnetic data. The method is based on the multiple signal classification (MUSIC) algorithm and is tolerant of the influence of background brain activity. In this method, the noise covariance matrix is estimated using a portion of the data that contains noise, but does not contain any signal information. Then, a modified noise subspace projector is formed using the generalized eigenvectors of the noise and measured-data covariance matrices. The MUSIC localizer is calculated using this noise subspace projector and the noise covariance matrix. The results from a computer simulation have verified the effectiveness of the method. The method was then applied to source estimation for auditory-evoked fields elicited by syllable speech sounds. The results strongly suggest the method's effectiveness in removing the influence of background activity.

摘要

本文提出了一种从时空生物磁数据中定位多个电流偶极子的方法。该方法基于多重信号分类(MUSIC)算法,并且能够耐受背景脑活动的影响。在该方法中,使用包含噪声但不包含任何信号信息的数据部分来估计噪声协方差矩阵。然后,利用噪声协方差矩阵和测量数据协方差矩阵的广义特征向量形成一个修正的噪声子空间投影算子。使用该噪声子空间投影算子和噪声协方差矩阵来计算MUSIC定位器。计算机模拟结果验证了该方法的有效性。然后将该方法应用于音节语音诱发的听觉诱发电场的源估计。结果有力地表明了该方法在消除背景活动影响方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验