Suppr超能文献

Cations affect [3H]mazindol and [3H]WIN 35,428 binding to the human dopamine transporter in a similar fashion.

作者信息

Wu Q, Coffey L L, Reith M E

机构信息

Department of Biology, Illinois State University, Normal, U.S.A.

出版信息

J Neurochem. 1997 Sep;69(3):1106-18. doi: 10.1046/j.1471-4159.1997.69031106.x.

Abstract

The present study addresses the possibility that there are different cocaine-related and mazindol-related binding domains on the dopamine transporter (DAT) that show differential sensitivity to cations. The effects of Zn2+, Mg2+, Hg2+, Li+, K+, and Na+ were assessed on the binding of [3H]mazindol and [3H]WIN 35,428 to the human (h) DAT expressed in C6 glioma cells under identical conditions for intact cell and membrane assays. The latter were performed at both 0 and 21 degrees C. Zn2+ (30-100 microM) stimulated binding of both radioligands to membranes, with a relatively smaller effect for [3H]mazindol; Mg2+ (0.1-100 microM) had no effect; Hg2+ at approximately 3 microM stimulated binding to membranes, with a relatively smaller effect for [3H]mazindol than [3H]WIN 35,428 at 0 degrees C, and at 30-100 microM inhibited both intact cell and membrane binding; Li+ and K+ substitution (30-100 mM) inhibited binding to membranes more severely than to intact cells; and Na+ substitution was strongly stimulatory. With only a few exceptions, the patterns of ion effects were remarkably similar for both radioligands at both 0 and 21 degrees C, suggesting the involvement of common binding domains on the hDAT impacted similarly by cations. Therefore, if there are different binding domains for WIN 35,428 and mazindol, these are not affected differentially by the cations studied in the present experiments, except for the stimulatory effect of Zn2+ at 0 and 21 degrees C and Hg2+ at 0 degrees C.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验