Suppr超能文献

通过马尔可夫过程反转从单通道数据确定速率常数。

Inversion of Markov processes to determine rate constants from single-channel data.

作者信息

Jackson M B

机构信息

Department of Physiology, University of Wisconsin Medical School, Madison 53706, USA.

出版信息

Biophys J. 1997 Sep;73(3):1382-94. doi: 10.1016/S0006-3495(97)78170-0.

Abstract

The determination of rate constants from single-channel data can be very difficult, in part because the single-channel lifetime distributions commonly analyzed by experimenters often have a complicated mathematical relation to the channel gating mechanism. The standard treatment of channel gating as a Markov process leads to the prediction that lifetime distributions are exponential functions. As the number of states of a channel gating scheme increases, the number of exponential terms in the lifetime distribution increases, and the weights and decay constants of the lifetime distributions become progressively more complicated functions of the underlying rate constants. In the present study a mathematical strategy for inverting these functions is introduced in order to determine rate constants from single-channel lifetime distributions. This inversion is easy for channel gating schemes with two or fewer states of a given conductance, so the present study focuses on schemes with more states. The procedure is to derive explicit equations relating the parameters of the lifetime distribution to the rate constants of the scheme. Such equations can be derived using the equality between symmetric functions of eigenvalues of a matrix and sums over principle minors, as well as expressions for the moments, derivatives, and weights of a lifetime distribution. The rate constants are then obtained as roots to this system of equations. For a gating scheme with three sequential closed states and a single gateway state, exact analytical expressions were found for each rate constant in terms of the parameters of the three-exponential closed-time distribution. For several other gating schemes, systems of equations were found that could be solved numerically to obtain the rate constants. Lifetime distributions were shown to specify a unique set of real rate constants in sequential gating schemes with up to five closed or five open states. For kinetic schemes with multiple gating pathways, the analysis of simulated data revealed multiple solutions. These multiple solutions could be distinguished by examining two-dimensional probability density functions. The utility of the methods introduced here are demonstrated by analyzing published data on nicotinic acetylcholine receptors, GABA(A) receptors, and NMDA receptors.

摘要

从单通道数据确定速率常数可能非常困难,部分原因是实验者通常分析的单通道寿命分布与通道门控机制往往具有复杂的数学关系。将通道门控作为马尔可夫过程的标准处理方法预测寿命分布是指数函数。随着通道门控方案状态数的增加,寿命分布中指数项的数量增加,并且寿命分布的权重和衰减常数逐渐成为基础速率常数的更复杂函数。在本研究中,引入了一种数学策略来反转这些函数,以便从单通道寿命分布中确定速率常数。对于给定电导具有两个或更少状态的通道门控方案,这种反转很容易,因此本研究重点关注具有更多状态的方案。该过程是推导将寿命分布的参数与方案的速率常数相关联的显式方程。可以使用矩阵特征值的对称函数与主子式之和之间的等式以及寿命分布的矩、导数和权重的表达式来推导此类方程。然后将速率常数作为该方程组的根来获得。对于具有三个连续关闭状态和一个单一门控状态的门控方案,找到了每个速率常数关于三指数关闭时间分布参数的精确解析表达式。对于其他几种门控方案,找到了可以通过数值求解以获得速率常数的方程组。在具有多达五个关闭或五个开放状态的顺序门控方案中,寿命分布被证明指定了一组唯一的实际速率常数。对于具有多个门控途径的动力学方案,对模拟数据的分析揭示了多个解。这些多个解可以通过检查二维概率密度函数来区分。通过分析关于烟碱型乙酰胆碱受体、GABA(A)受体和NMDA受体的已发表数据,证明了此处介绍的方法的实用性。

相似文献

1
Inversion of Markov processes to determine rate constants from single-channel data.
Biophys J. 1997 Sep;73(3):1382-94. doi: 10.1016/S0006-3495(97)78170-0.
2
Voltage-dependent gating mechanism for single fast chloride channels from rat skeletal muscle.
J Physiol. 1992;453:279-306. doi: 10.1113/jphysiol.1992.sp019229.
5
Markovian models of low and high activity levels of cardiac ryanodine receptors.
Biophys J. 2001 Jun;80(6):2727-41. doi: 10.1016/S0006-3495(01)76241-8.
6
Phi-value analysis of a linear, sequential reaction mechanism: theory and application to ion channel gating.
Biophys J. 2005 Dec;89(6):3680-5. doi: 10.1529/biophysj.105.067215. Epub 2005 Sep 23.
8
Linear prediction and single-channel recording.
J Neurosci Methods. 1995 Aug;60(1-2):69-78. doi: 10.1016/0165-0270(94)00221-2.
10
Two-dimensional components and hidden dependencies provide insight into ion channel gating mechanisms.
Biophys J. 1997 Jun;72(6):2524-44. doi: 10.1016/S0006-3495(97)78897-0.

引用本文的文献

1
Linking exponential components to kinetic states in Markov models for single-channel gating.
J Gen Physiol. 2008 Aug;132(2):295-312. doi: 10.1085/jgp.200810008. Epub 2008 Jul 14.
2
Quantitative analysis of a fully generalized four-state kinetic scheme.
Biophys J. 2006 Jul 1;91(1):173-8. doi: 10.1529/biophysj.106.081067.

本文引用的文献

1
Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events.
Biophys J. 1996 Jan;70(1):264-80. doi: 10.1016/S0006-3495(96)79568-1.
2
Burst kinetics of single NMDA receptor currents in cell-attached patches from rat brain cortical neurons in culture.
J Physiol. 1995 Jul 15;486 ( Pt 2)(Pt 2):411-26. doi: 10.1113/jphysiol.1995.sp020822.
3
Estimating kinetic constants from single channel data.
Biophys J. 1983 Aug;43(2):207-23. doi: 10.1016/S0006-3495(83)84341-0.
4
On the stochastic properties of single ion channels.
Proc R Soc Lond B Biol Sci. 1981 Mar 6;211(1183):205-35. doi: 10.1098/rspb.1981.0003.
5
Statistical properties of single sodium channels.
J Gen Physiol. 1984 Oct;84(4):505-34. doi: 10.1085/jgp.84.4.505.
8
Equivalence of aggregated Markov models of ion-channel gating.
Proc R Soc Lond B Biol Sci. 1989 Apr 22;236(1284):269-309. doi: 10.1098/rspb.1989.0024.
10
Theory of the kinetic analysis of patch-clamp data.
Biophys J. 1987 Dec;52(6):961-78. doi: 10.1016/S0006-3495(87)83289-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验