Qin F, Auerbach A, Sachs F
Department of Biophysical Sciences, State University of New York at Buffalo, New York 14214, USA.
Biophys J. 1996 Jan;70(1):264-80. doi: 10.1016/S0006-3495(96)79568-1.
We present here a maximal likelihood algorithm for estimating single-channel kinetic parameters from idealized patch-clamp data. The algorithm takes into account missed events caused by limited time resolution of the recording system. Assuming a fixed dead time, we derive an explicit expression for the corrected transition rate matrix by generalizing the theory of Roux and Sauve (1985, Biophys. J. 48:149-158) to the case of multiple conductance levels. We use a variable metric optimizer with analytical derivatives for rapidly maximizing the likelihood. The algorithm is applicable to data containing substates and multiple identical or nonidentical channels. It allows multiple data sets obtained under different experimental conditions, e.g., concentration, voltage, and force, to be fit simultaneously. It also permits a variety of constraints on rate constants and provides standard errors for all estimates of model parameters. The algorithm has been tested extensively on a variety of kinetic models with both simulated and experimental data. It is very efficient and robust; rate constants for a multistate model can often be extracted in a processing time of approximately 1 min, largely independent of the starting values.
我们在此展示一种用于从理想化膜片钳数据估计单通道动力学参数的最大似然算法。该算法考虑了由记录系统有限的时间分辨率导致的漏记事件。假设固定的死时间,我们通过将Roux和Sauve(1985年,《生物物理学杂志》48:149 - 158)的理论推广到多电导水平的情况,推导出校正转换率矩阵的显式表达式。我们使用带有解析导数的变尺度优化器来快速最大化似然度。该算法适用于包含亚状态和多个相同或不同通道的数据。它允许同时拟合在不同实验条件下(例如浓度、电压和力)获得的多个数据集。它还允许对速率常数施加各种约束,并为模型参数的所有估计提供标准误差。该算法已在各种动力学模型上用模拟数据和实验数据进行了广泛测试。它非常高效且稳健;多状态模型的速率常数通常可以在大约1分钟的处理时间内提取出来,很大程度上与初始值无关。