Shinoda M, Toki Y, Murase K, Mokuno S, Okumura K, Ito T
Internal Medicine II, Nagoya University School of Medicine, Japan.
Life Sci. 1997;61(10):997-1007. doi: 10.1016/s0024-3205(97)00604-8.
This study was undertaken to clarify factors other than nitric oxide involved in reactive hyperemia after a short (30 sec) and a long (300 sec) coronary global no-flow ischemia in isolated rat hearts perfused at a constant pressure (90 mmHg) with special focuses on the contribution of various K channels including large and small conductance Ca-activated K (KCa) channels as well as ATP-sensitive K (KATP) channels. Reactive hyperemia was induced following 30 sec and 300 sec of no-flow ischemia of the heart. Coronary reactive hyperemia was observed even after the inhibition of nitric oxide synthase by N(omega)-nitro-L-arginine methylester (L-NAME). Selected K channel blockers, none of which affected the basal flow, were used to evaluate contribution of K channels to this L-NAME-resistant reactive hyperemia. After 30-sec ischemia, tetraethylammonium (TEA: a non-selective K channel blocker), glibenclamide (Gli: a KATP channel blocker) and alpha,beta-methylene adenosine 5'-diphosphonate (AOPCP: an inhibitor of ecto 5'-nucleotidase) all suppressed both peak flow/basal flow (%PF) and repayment of flow debt (%RFD). After 300-sec ischemia, TEA and charybdotoxin (ChTX: a large conductance KCa channel blocker) decreased %PF and %RFD; AOPCP decreased both %RFD and duration, 4-aminopyridine (a voltage-dependent K channel blocker) decreased only duration. Neither apamin (a small conductance KCa channel blocker) nor indomethacin (a cyclooxygenase inhibitor) affected the both types of reactive hyperemia. These findings suggest that opening of KATP channel contributes to coronary vasodilation in reactive hyperemia after short 30-sec ischemia, and that opening of KCa, but not KATP, channel contributes to it after long 300-sec ischemia. These results also suggest that adenosine may partly be involved in both types of reactive hyperemia.
本研究旨在阐明在恒压(90 mmHg)灌注的离体大鼠心脏中,短暂(30秒)和长时间(300秒)冠状动脉全心无复流缺血后,除一氧化氮之外参与反应性充血的因素,特别关注各种钾通道的作用,包括大电导和小电导钙激活钾(KCa)通道以及ATP敏感性钾(KATP)通道。在心脏无复流缺血30秒和300秒后诱导反应性充血。即使在用N(ω)-硝基-L-精氨酸甲酯(L-NAME)抑制一氧化氮合酶后,仍观察到冠状动脉反应性充血。选用的钾通道阻滞剂均不影响基础血流,用于评估钾通道对这种L-NAME抵抗性反应性充血的作用。30秒缺血后,四乙铵(TEA:一种非选择性钾通道阻滞剂)、格列本脲(Gli:一种KATP通道阻滞剂)和α,β-亚甲基腺苷5'-二磷酸酯(AOPCP:一种胞外5'-核苷酸酶抑制剂)均抑制了峰值血流/基础血流(%PF)和血流亏欠偿还(%RFD)。300秒缺血后,TEA和蝎毒素(ChTX:一种大电导KCa通道阻滞剂)降低了%PF和%RFD;AOPCP降低了%RFD和持续时间,4-氨基吡啶(一种电压依赖性钾通道阻滞剂)仅降低了持续时间。蜂毒明肽(一种小电导KCa通道阻滞剂)和吲哚美辛(一种环氧化酶抑制剂)均不影响这两种类型的反应性充血。这些发现表明,KATP通道开放有助于短暂30秒缺血后反应性充血时的冠状动脉血管舒张,而KCa通道而非KATP通道开放有助于长时间300秒缺血后的反应性充血。这些结果还表明,腺苷可能部分参与了这两种类型的反应性充血。