Humphery-Smith I, Cordwell S J, Blackstock W P
University of Sydney, Centre for Proteome Research and Gene-Product Mapping, National Innovation Centre, Eveleigh, Australia.
Electrophoresis. 1997 Aug;18(8):1217-42. doi: 10.1002/elps.1150180804.
A methodological overview of proteome analysis is provided along with details of efforts to achieve high-throughput screening (HTS) of protein samples derived from two-dimensional electrophoresis gels. For both previously sequenced organisms and those lacking significant DNA sequence information, mass spectrometry has a key role to play in achieving HTS. Prototype robotics designed to conduct appropriate chemistries and deliver 700-1000 protein (genes) per day to batteries of mass spectrometers or liquid chromatography (LC)-based analyses are well advanced, as are efforts to produce high density gridded arrays containing > 1000 proteins on a single matrix assisted laser desorption ionisation/time-of-flight (MALDI-TOF) sample stage. High sensitivity HTS of proteins is proposed by employing principally mass spectrometry in an hierarchical manner: (i) MALDI-TOF-mass spectrometry (MS) on at least 1000 proteins per day; (ii) electrospray ionisation (ESI)/MS/MS for analysis of peptides with respect to predicted fragmentation patterns or by sequence tagging; and (iii) ESI/MS/MS for peptide sequencing. Genomic sequences when complemented with information derived from hybridisation assays and proteome analysis may herald in a new era of holistic cellular biology. The current preoccupation with the absolute quantity of gene-product (RNA and/or protein) should move backstage with respect to more molecularly relevant parameters, such as: molecular half-life; synthesis rate; functional competence (presence or absence of mutations); reaction kinetics; the influence of individual gene-products on biochemical flux; the influence of the environment, cell-cycle, stress and disease on gene-products; and the collective roles of multigenic and epigenetic phenomena governing cellular processes. Proteome analysis is demonstrated as being capable of proceeding independently of DNA sequence information and aiding in genomic annotation. Its ability to confirm the existence of gene-products predicted from DNA sequence is a major contribution to genomic science. The workings of software engines necessary to achieve large-scale proteome analysis are outlined, along with trends towards miniaturisation, analyte concentration and protein detection independent of staining technologies. A challenge for proteome analysis into the future will be to reduce its dependence on two-dimensional (2-D) gel electrophoresis as the preferred method of separating complex mixtures of cellular proteins. Nonetheless, proteome analysis already represents a means of efficiently complementing differential display, high density expression arrays, expressed sequence tags, direct or subtractive hybridisation, chromosomal linkage studies and nucleic acid sequencing as a problem solving tool in molecular biology.
本文提供了蛋白质组分析的方法概述,以及对源自二维电泳凝胶的蛋白质样品进行高通量筛选(HTS)的详细努力。对于先前已测序的生物体和那些缺乏重要DNA序列信息的生物体,质谱在实现高通量筛选中都起着关键作用。旨在进行适当化学操作并每天向质谱仪或基于液相色谱(LC)的分析仪器输送700 - 1000种蛋白质(基因)的原型机器人技术已经相当先进,在单个基质辅助激光解吸电离/飞行时间(MALDI - TOF)样品台上生产包含超过1000种蛋白质的高密度网格阵列的努力也是如此。通过主要以分层方式使用质谱来实现蛋白质的高灵敏度高通量筛选:(i)每天对至少1000种蛋白质进行MALDI - TOF - 质谱(MS)分析;(ii)通过电喷雾电离(ESI)/ MS / MS分析肽段的预测断裂模式或通过序列标签进行分析;(iii)通过ESI / MS / MS进行肽段测序。当基因组序列与来自杂交分析和蛋白质组分析的信息相结合时,可能预示着整体细胞生物学的新时代。当前对基因产物(RNA和/或蛋白质)绝对数量的关注,应让位于更具分子相关性的参数,例如:分子半衰期;合成速率;功能能力(是否存在突变);反应动力学;单个基因产物对生化通量的影响;环境、细胞周期、应激和疾病对基因产物的影响;以及控制细胞过程的多基因和表观遗传现象的集体作用。蛋白质组分析被证明能够独立于DNA序列信息进行,并有助于基因组注释。其确认从DNA序列预测的基因产物存在的能力是对基因组科学的一项重大贡献。概述了实现大规模蛋白质组分析所需的软件引擎的工作原理,以及朝着小型化、分析物浓缩和独立于染色技术的蛋白质检测的趋势。未来蛋白质组分析面临的一个挑战将是减少其对二维(2 - D)凝胶电泳作为分离细胞蛋白质复杂混合物的首选方法的依赖。尽管如此,蛋白质组分析已经是一种有效地补充差异显示、高密度表达阵列、表达序列标签、直接或消减杂交、染色体连锁研究和核酸测序的手段,作为分子生物学中的一种问题解决工具。