Volk K J, Hill S E, Kerns E H, Lee M S
Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, CT 06492, USA.
J Chromatogr B Biomed Sci Appl. 1997 Aug 15;696(1):99-115. doi: 10.1016/s0378-4347(97)00208-9.
A rapid and systematic strategy based on liquid chromatography-mass spectrometry (LC-MS) profiling and liquid chromatography-tandem mass spectrometry (LC-MS-MS) substructural techniques was utilized to elucidate the degradation products of paclitaxel, the active ingredient in Taxol. This strategy integrates, in a single instrumental approach, analytical HPLC, UV detection, full-scan electrospray MS, and MS-MS to rapidly and accurately elucidate structures of impurities and degradants. In these studies, degradants induced by acid, base, peroxide, and light were profiled using LC-MS and LC-MS-MS methodologies resulting in an LC-MS degradant database which includes information on molecular structures, chromatographic behavior, molecular mass, and MS-MS substructural information. The stressing conditions which may cause drug degradation are utilized to validate the analytical monitoring methods and serve as predictive tools for future formulation and packaging studies. Degradation products formed upon exposure to basic conditions included baccatin III, paclitaxel sidechain methyl ester, 10-deacetylpaclitaxel, and 7-epipaclitaxel. Degradation products formed upon exposure to acidic conditions included 10-deacetylpaclitaxel and the oxetane ring opened product. Treatment with hydrogen peroxide produced only 10-deacetylpaclitaxel. Exposure to high intensity ligh produced a number of degradants. The most abundant photodegradant of paclitaxel corresponded to an isomer which contains a C3-C11 bridge. These methodologies are applicable at any stage of the drug product cycle from discovery through development. This library of paclitaxel degradants provides a foundation for future development work regarding product monitoring, as well as use as a diagnostic tool for new degradation products.
采用一种基于液相色谱 - 质谱(LC - MS)分析和液相色谱 - 串联质谱(LC - MS - MS)亚结构技术的快速系统策略,以阐明紫杉醇(泰素中的活性成分)的降解产物。该策略在单一仪器方法中整合了分析型高效液相色谱、紫外检测、全扫描电喷雾质谱和串联质谱,以快速准确地阐明杂质和降解产物的结构。在这些研究中,使用LC - MS和LC - MS - MS方法对酸、碱、过氧化物和光诱导的降解产物进行了分析,从而建立了一个LC - MS降解产物数据库,其中包括分子结构、色谱行为、分子量和MS - MS亚结构信息。利用可能导致药物降解的强化条件来验证分析监测方法,并作为未来制剂和包装研究的预测工具。在碱性条件下形成的降解产物包括巴卡亭III、紫杉醇侧链甲酯、10 - 去乙酰紫杉醇和7 - 表紫杉醇。在酸性条件下形成的降解产物包括10 - 去乙酰紫杉醇和氧杂环丁烷环开环产物。用过氧化氢处理仅产生10 - 去乙酰紫杉醇。暴露于高强度光下产生了多种降解产物。紫杉醇最丰富的光降解产物对应于一种含有C3 - C11桥的异构体。这些方法适用于从药物发现到开发的药品周期的任何阶段。这个紫杉醇降解产物库为未来关于产品监测的开发工作奠定了基础,并可作为新降解产物的诊断工具。