Suppr超能文献

Stress analysis of halo pin insertion by non-linear finite element modeling.

作者信息

Voor M J, Anderson R C, Hart R T

机构信息

Department of Orthopaedic Surgery, University of Louisville, KY 40292, USA.

出版信息

J Biomech. 1997 Sep;30(9):903-9. doi: 10.1016/s0021-9290(97)82887-4.

Abstract

Halo fixation is associated with a high complication rate. The most common complications are loose pins and pin site infections believed to be exacerbated by loose pins. Although pin designs and the technique of pin insertion have changed little in over 30 years, the pin/skull mechanics are poorly understood. Halo pin insertion was modeled using nonlinear finite element analyses to determine the stress distribution in the human skull underlying and surrounding the point of pin fixation. Model validity was established by comparing pin insertion depth and the profile of the hole generated in the bone to the results of experimental mechanical tests. The region surrounding the pin tip within 1 mm was found to undergo plastic deformation and compressive loading in excess of the compressive yield strength of cortical bone. The implication is that damaged bone in this region is responsible for the high incidence of halo pin loosening. Resorption or migration of bone particles with periodic relief of compression in this region due to daily cyclic forces might result in an enlarged pin site and eventually, a loose pin.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验