Lidholt K, Fjelstad M, Lindahl U, Goto F, Ogawa T, Kitagawa H, Sugahara K
Department of Medical and Physiological Chemistry, University of Uppsala, The Biomedical Center, Sweden.
Glycoconj J. 1997 Sep;14(6):737-42. doi: 10.1023/a:1018525602197.
Two glycosaminoglycan-protein linkage tetrasaccharide-serine compounds, GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser and GlcAbeta1-3Gal(4-O-sulfate)beta1-3Galbeta1-4Xylbeta1-O -Ser, were tested as hexosamine acceptors, using UDP-[3H]GlcNAc and UDP-[3H]GalNAc as sugar donors, and solubilized mouse mastocytoma microsomes as enzyme source. The nonsulfated Ser-tetrasaccharide was found to function as an acceptor for a GalNAc residue, whereas the Ser-tetrasaccharide containing a sulfated galactose unit was inactive. Characterization of the radio-labelled product by digestion with alpha-N-acetylgalactosaminidase and beta-N-acetylhexosaminidase revealed that the [3H]GalNAc unit was alpha-linked, as in the product previously synthesized using serum enzymes, and not beta-linked as found in the chondroitin sulfate polymer. Heparan sulfate/heparin biosynthesis could not be primed by either of the two linkage Ser-tetrasaccharides, since no transfer of [3H]GlcNAc from UDP-[3H]GlcNAc could be detected. By contrast, transfer of a [3H]GlcNAc unit to a [GlcAbeta1-4GlcNAcalpha1-4]2-GlcAbeta1-4-aMan hexasaccharide acceptor used to assay the GlcNAc transferase involved in chain elongation, was readily detected. These results are in agreement with the recent proposal that two different N-acetylglucosaminyl transferases catalyse the biosynthesis of heparan sulfate. Although the mastocytoma system contains both the heparan sulfate/heparin and chondroitin sulfate biosynthetic enzymes the Ser-tetrasaccharides do not seem to fulfil the requirements to serve as acceptors for the first HexNAc transfer reactions involved in the formation of these polysaccharides.
两种糖胺聚糖 - 蛋白质连接四糖 - 丝氨酸化合物,即GlcAbeta1 - 3Galbeta1 - 3Galbeta1 - 4Xylbeta1 - O - Ser和GlcAbeta1 - 3Gal(4 - O - 硫酸酯)beta1 - 3Galbeta1 - 4Xylbeta1 - O - Ser,被用作己糖胺受体进行测试,使用UDP - [3H]GlcNAc和UDP - [3H]GalNAc作为糖供体,并以溶解的小鼠肥大细胞瘤微粒体作为酶源。发现未硫酸化的丝氨酸 - 四糖可作为GalNAc残基的受体,而含有硫酸化半乳糖单元的丝氨酸 - 四糖则无活性。用α - N - 乙酰半乳糖胺酶和β - N - 乙酰己糖胺酶消化对放射性标记产物进行表征,结果显示[3H]GalNAc单元是α连接的,如同先前使用血清酶合成的产物一样,而不像硫酸软骨素聚合物中那样是β连接的。两种连接丝氨酸 - 四糖均无法引发硫酸乙酰肝素/肝素的生物合成,因为未检测到UDP - [3H]GlcNAc中的[3H]GlcNAc发生转移。相比之下,很容易检测到[3H]GlcNAc单元转移到用于检测参与链延长的GlcNAc转移酶的[GlcAbeta1 - 4GlcNAcalpha1 - 4]2 - GlcAbeta1 - 4 - aMan六糖受体上。这些结果与最近提出的由两种不同的N - 乙酰葡糖胺转移酶催化硫酸乙酰肝素生物合成的提议一致。尽管肥大细胞瘤系统同时包含硫酸乙酰肝素/肝素和硫酸软骨素生物合成酶,但丝氨酸 - 四糖似乎并不满足作为这些多糖形成过程中首次HexNAc转移反应受体的要求。