Suppr超能文献

卡瓦列里原理在使用激光共聚焦显微镜进行体积估计中的应用。

Application of the Cavalieri principle in volume estimation using laser confocal microscopy.

作者信息

Prakash Y S, Smithson K G, Sieck G C

机构信息

Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota 55905, USA.

出版信息

Neuroimage. 1994 Nov;1(4):325-33. doi: 10.1006/nimg.1994.1017.

Abstract

The Cavalieri principle, a well-established stereological technique, uses interpolation between samples to estimate volume of three-dimensional (3D) objects. Serial optical sectioning with the confocal microscope resembles certain aspects of the Cavalieri principle, albeit with no interpolation. However, reconstruction and analysis of finely spaced optical sections can be cumbersome and time consuming. Application of the Cavalieri principle to confocal sections may be advantageous in reducing the size of the data set required to obtain reliable estimates of volume. In the present study, somal volumes of phrenic motoneurons were estimated by applying the Cavalieri principle to confocal images. These estimates were compared to measurements of somal volume using on interpolation of confocal sections. Phrenic motoneurons in adult rats were retrogradely labeled with a fluorescent rhodamine dye. Confocal optical sections of 0.6 micron thickness were then obtained from 150-micron-thick spinal cord slices containing labeled neurons. These image sets were reoriented to represent transverse sections. The Cavalieri principle was applied to these confocal image sets at selected sampling intervals from 1.2 to 3.0 microns. Planimetric measurements of motoneuron somal cross-sectional area in the selected sections were made using a point-counting method. At sampling intervals less than 2.4 microns, individuals motoneuron somal volume estimates were similar for the noninterpolated confocal and the interpolated Cavalieri methods. At these sampling intervals, the distributions of motoneuron somal volumes were also similar for the two methods. At a sampling interval of 2.4 microns or greater, there was a greater variability in individual motoneuron somal volume estimates, although the population mean and median were similar to the noninterpolated confocal measurements. Therefore, a satisfactory agreement between noninterpolated confocal measurements and the Cavalieri estimates suggests that less-stringent optical sectioning parameters may suffice for individual cell volume measurements when using confocal microscopy, thus making it significantly more efficient.

摘要

卡瓦列里原理是一种成熟的体视学技术,它通过样本间的插值来估计三维(3D)物体的体积。共聚焦显微镜的连续光学切片在某些方面类似于卡瓦列里原理,尽管没有插值。然而,对间隔精细的光学切片进行重建和分析可能既繁琐又耗时。将卡瓦列里原理应用于共聚焦切片在减少获得可靠体积估计所需数据集的大小方面可能具有优势。在本研究中,通过将卡瓦列里原理应用于共聚焦图像来估计膈运动神经元的胞体体积。将这些估计值与使用共聚焦切片插值测量的胞体体积进行比较。成年大鼠的膈运动神经元用荧光罗丹明染料进行逆行标记。然后从含有标记神经元的150微米厚的脊髓切片中获取厚度为0.6微米的共聚焦光学切片。这些图像集被重新定向以表示横切面。在1.2至3.0微米的选定采样间隔下,将卡瓦列里原理应用于这些共聚焦图像集。使用点计数法对选定切片中运动神经元胞体横截面积进行平面测量。在采样间隔小于2.4微米时,非插值共聚焦法和插值卡瓦列里法对单个运动神经元胞体体积的估计相似。在这些采样间隔下,两种方法的运动神经元胞体体积分布也相似。在2.4微米或更大的采样间隔下,单个运动神经元胞体体积估计的变异性更大,尽管总体均值和中位数与非插值共聚焦测量值相似。因此,非插值共聚焦测量值与卡瓦列里估计值之间令人满意 的一致性表明,在使用共聚焦显微镜进行单个细胞体积测量时,不太严格的光学切片参数可能就足够了,从而使其效率显著提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验