Suppr超能文献

The region encoded by the alternatively spliced exon IIIA in mesenchymal fibronectin appears essential for chondrogenesis at the level of cellular condensation.

作者信息

Gehris A L, Stringa E, Spina J, Desmond M E, Tuan R S, Bennett V D

机构信息

Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA.

出版信息

Dev Biol. 1997 Oct 15;190(2):191-205. doi: 10.1006/dbio.1997.8693.

Abstract

Fibronectin in the extracellular matrix of tissues acts as a substrate for cell adhesion and migration during development. Heterogeneity in the structure of fibronectin is largely due to the alternative splicing of at least three exons (IIIB, IIIA, and V) during processing of a single primary transcript. Fibronectin mRNA alternative splicing patterns change from B+A+V+ to B+A-V+ during chondrogenesis. In this report, immunohistochemical analysis demonstrates that while fibronectin protein containing the region encoded by exon IIIB is present throughout the limb at all stages of development, fibronectin protein containing the region encoded by exon IIIA disappears from cartilaginous regions just after condensation in vivo and in high-density mesenchymal micromass cultures in vitro. Treatment of mesenchymal micromass cultures prior to condensation with an antibody specific for the region encoded by exon IIIA disrupts the formation of cellular condensations and inhibits subsequent chondrogenesis in a dose- and time-dependent manner. Furthermore, microinjection of the exon IIIA antibody into embryonic chick limb primordia in vivo results in malformations characterized by smaller limbs and loss of limb skeletal elements. These results strongly suggest that the presence of the region encoded by exon IIIA in mesenchymal fibronectin is necessary for the condensation event that occurs during chondrogenesis.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验