Luch A, Seidel A, Glatt H, Platt K L
Institute of Toxicology, University of Mainz, Germany.
Chem Res Toxicol. 1997 Oct;10(10):1161-70. doi: 10.1021/tx970005i.
Polycyclic aromatic hydrocarbons require metabolic activation in order to exert their biological activity initiated by DNA binding. The metabolic pathway leading to bay or fjord region dihydrodiol epoxides as ultimate mutagenic and/or carcinogenic metabolites is thought to play a dominant role. For dibenzo[a,l]pyrene, considered as the most potent carcinogenic polycyclic aromatic hydrocarbon, the formation of the fjord region syn- and/or anti-11,12-dihydrodiol 13,-14-epoxide (DB[a,l]PDE) diastereomers has been found to be the principal metabolic activation pathway in cell cultures leading to DNA adducts. In order to further elucidate the stereoselectivity involved in this activation pathway via the formation of the trans-11,12-dihydrodiol, we have synthesized the enantiomerically pure 11,12-dihydrodiols of dibenzo[a,l]-pyrene and investigated their biotransformation in rodents. Incubations with liver microsomes of Sprague-Dawley rats and CD-1 mice pretreated with Aroclor 1254 revealed that the enzymatic conversion to the fjord region DB[a,l]PDE strongly depends on the absolute configuration of the 11,12-dihydrodiol enantiomers. While oxidation at the 13,14-position of the (+)-(11S,12S)-dihydrodiol is limited to a small extent, the (-)-11R,12R-enantiomer is metabolized to its fjord region dihydrodiol epoxides in considerably higher amounts. Moreover, this substrate is transformed with high stereoselectivity to the corresponding (-)-anti-dihydrodiol epoxide by liver microsomes of Aroclor 1254-treated rodents. The metabolism results were in good accordance with the extent of stable adduct formation in calf thymus DNA as investigated by the 32P-postlabeling technique and with the mutagenicity in Chinese hamster V79 cells of the two enantiomeric 11,12-dihydrodiols mediated by hepatic postmitochondrial preparations of Aroclor 1254-treated rats. The results indicate that both genotoxic events occurred predominantly by the stereoselective activation of the (-)-(11R,12R)-dihydrodiol to the (-)-anti-DB[a,l]PDE with R,S,S,R-configuration.
多环芳烃需要代谢活化才能通过与DNA结合发挥其生物活性。导致海湾或峡湾区二氢二醇环氧化物作为最终诱变和/或致癌代谢物的代谢途径被认为起主要作用。对于被认为是最具致癌性的多环芳烃二苯并[a,l]芘,已发现峡湾区顺式和/或反式-11,12-二氢二醇13,-14-环氧化物(DB[a,l]PDE)非对映异构体的形成是细胞培养中导致DNA加合物的主要代谢活化途径。为了通过形成反式-11,12-二氢二醇进一步阐明该活化途径中涉及的立体选择性,我们合成了对映体纯的二苯并[a,l]芘11,12-二氢二醇,并研究了它们在啮齿动物中的生物转化。用Aroclor 1254预处理的Sprague-Dawley大鼠和CD-1小鼠的肝微粒体进行孵育,结果表明,酶促转化为峡湾区DB[a,l]PDE强烈依赖于11,12-二氢二醇对映体的绝对构型。虽然(+)-(11S,12S)-二氢二醇在13,14位的氧化程度有限,但(-)-11R,12R-对映体代谢为其峡湾区二氢二醇环氧化物的量要高得多。此外,该底物被Aroclor 1254处理的啮齿动物的肝微粒体以高立体选择性转化为相应的(-)-反式二氢二醇环氧化物。代谢结果与通过32P后标记技术研究的小牛胸腺DNA中稳定加合物形成的程度以及由Aroclor 1254处理的大鼠的肝线粒体后制剂介导的两种对映体11,12-二氢二醇在中国仓鼠V79细胞中的诱变性高度一致。结果表明,两种遗传毒性事件主要是通过(-)-(11R,12R)-二氢二醇立体选择性活化为具有R,S,S,R-构型的(-)-反式-DB[a,l]PDE而发生的。