Fujii E, Irie K, Ohba K, Ogawa A, Yoshioka T, Yamakawa M, Muraki T
Department of Pharmacology, Tokyo Women's Medical College, Japan.
Naunyn Schmiedebergs Arch Pharmacol. 1997 Oct;356(4):475-80. doi: 10.1007/pl00005079.
We investigated role of nitric oxide (NO), prostaglandins (PG) and tyrosine kinase in vascular endothelial growth factor (VEGF)-induced increase in vascular permeability in mouse skin. Subcutaneous injection of VEGF (0.5-2.0 ng/site) induced dose- and time-dependent increase in vascular permeability at the injection site determined by a leakage of Pontamine sky blue. VEGF (1 ng/site)-induced dye leakage was partially inhibited by N(G)-nitro-L-arginine methyl ester (an inhibitor for both constitutive and inducible NO synthase) (5 and 10 mg/kg, i.v.) and by aminoguanidine (a selective inducible NO synthase inhibitor) (5-20 mg/kg, i.v.), but not by an inactive enantiomer, N(G)-nitro-D-arginine methyl ester (10 mg/kg, i.v.). Pretreatment with an intraperitoneal injection of indomethacin (a nonselective cyclooxygenase inhibitor) (5 mg/kg) or N-(2-cyclohexyloxy-4-nitrophenyl) methanesulphonamide (a cyclooxygenase-2 selective inhibitor) (1-100 microg/kg) almost completely inhibited the effect of VEGF (1 ng/site). Coadministration of PGE2 (3 and 30 nmol/site) with VEGF did not restore the inhibitory effect of indomethacin on VEGF (1 ng/site)-induced increase in vascular permeability. Lavendustin A (a selective tyrosine kinase inhibitor) (10 and 50 microg/kg, s.c.) dose-relatedly inhibited the VEGF (1 ng/site)-induced increase in dye leakage, whereas its negative control, lavendustin B (10 microg/kg, s.c.) had no effect. Another tyrosine kinase inhibitor, genistein (2.5 mg/kg, s.c.) also inhibited the response. Cycloheximide (a protein biosynthesis inhibitor) (35 mg/kg, s.c.) suppressed the response of VEGF (1 ng/site). Histologically, no cellular infiltration was observed in the area of VEGF injection. These results suggest that increased vascular permeability induced by VEGF is mediated by local production of NO and arachidonic acid metabolites other than PGE2, which are most probably produced by inducible NO synthase and cyclooxygenase-2, respectively. Protein tyrosine kinase-mediated phosphorylation and synthesis of any new proteins are likely to be required in this effect of VEGF in mouse skin.
我们研究了一氧化氮(NO)、前列腺素(PG)和酪氨酸激酶在血管内皮生长因子(VEGF)诱导的小鼠皮肤血管通透性增加中的作用。皮下注射VEGF(0.5 - 2.0 ng/部位)可导致注射部位血管通透性呈剂量和时间依赖性增加,这是通过滂胺天蓝渗漏来测定的。VEGF(1 ng/部位)诱导的染料渗漏被N(G)-硝基-L-精氨酸甲酯(一种组成型和诱导型NO合酶的抑制剂)(5和10 mg/kg,静脉注射)以及氨基胍(一种选择性诱导型NO合酶抑制剂)(5 - 20 mg/kg,静脉注射)部分抑制,但未被无活性的对映体N(G)-硝基-D-精氨酸甲酯(10 mg/kg,静脉注射)抑制。腹腔注射吲哚美辛(一种非选择性环氧化酶抑制剂)(5 mg/kg)或N-(2-环己氧基-4-硝基苯基)甲磺酰胺(一种环氧化酶-2选择性抑制剂)(1 - 100 μg/kg)预处理几乎完全抑制了VEGF(1 ng/部位)的作用。PGE2(3和30 nmol/部位)与VEGF共同给药并未恢复吲哚美辛对VEGF(1 ng/部位)诱导的血管通透性增加所产生的抑制作用。拉文达ustin A(一种选择性酪氨酸激酶抑制剂)(10和50 μg/kg,皮下注射)剂量依赖性地抑制了VEGF(1 ng/部位)诱导的染料渗漏增加,而其阴性对照拉文达ustin B(10 μg/kg,皮下注射)则无作用。另一种酪氨酸激酶抑制剂染料木黄酮(2.5 mg/kg,皮下注射)也抑制了该反应。放线菌酮(一种蛋白质生物合成抑制剂)(35 mg/kg,皮下注射)抑制了VEGF(1 ng/部位)的反应。组织学检查显示,在VEGF注射区域未观察到细胞浸润。这些结果表明,VEGF诱导的血管通透性增加是由NO和除PGE2之外的花生四烯酸代谢产物的局部产生介导的,它们很可能分别由诱导型NO合酶和环氧化酶-2产生。蛋白质酪氨酸激酶介导的磷酸化以及任何新蛋白质的合成可能是VEGF在小鼠皮肤中的这种作用所必需的。