Magga J, Vuolteenaho O, Tokola H, Marttila M, Ruskoaho H
Department of Pharmacology and Toxicology, Biocenter Oulu, University of Oulu, Finland.
Circ Res. 1997 Nov;81(5):694-702. doi: 10.1161/01.res.81.5.694.
The induction of atrial and ventricular B-type natriuretic peptide (BNP) gene expression is one of the earliest events occurring during hemodynamic overload. To examine the molecular mechanisms for increased BNP gene expression during cardiac overload, we studied the induction of the BNP gene expression compared with that of atrial natriuretic peptide (ANP) in a modified perfused rat heart preparation. An increase in right atrial pressure of 5 mm Hg resulted in a 1.4-fold (P < .05) and 2.2-fold (P < .01) increase in BNP mRNA levels after 1 and 2 hours, respectively, whereas ANP mRNA levels remained unchanged. Stretching for up to 2 hours also significantly increased right atrial immunoreactive BNP (ir-BNP) levels (from 15.8 +/- 2.2 to 20.1 +/- 1.2 ng/mg, P < .05). Actinomycin D (10 micrograms/mL), a transcriptional inhibitor, completely inhibited the stretch-induced increase in atrial BNP mRNA levels at 1 hour (P < .05) and 2 hours (P < .001), whereas a protein synthesis inhibitor, cycloheximide (90 micrograms/mL), had no effect on basal or direct mechanical stretch-induced increase in right atrial BNP mRNA levels. Furthermore, we examined the role of tyrosine kinase and protein kinase C activities in acute mechanical stretch-induced increase in BNP synthesis. Tyrosine kinase inhibitors lavendustin A (1 mumol/L) and tyrphostin A25 (3 mumol/L) and protein kinase C inhibitors staurosporine (30 nmol/L) and chelerythrine (1 mumol/L) prevented the stretch-induced increase in right atrial ir-BNP concentrations at 2 hours. In addition, chelerythrine inhibited the increase of right atrial BNP mRNA levels stimulated by cardiac overload. These resuls demonstrate that the early increase of BNP mRNA levels by mechanical stretch results from increased transcriptional activation and is independent of protein synthesis. Our results also suggest that protein kinase C and tyrosine kinases activities may be involved in coupling cardiac overload to alterations in atrial BNP synthesis.
心房和心室B型利钠肽(BNP)基因表达的诱导是血流动力学过载期间最早发生的事件之一。为了研究心脏过载期间BNP基因表达增加的分子机制,我们在改良的灌注大鼠心脏标本中,将BNP基因表达的诱导与心房利钠肽(ANP)的诱导进行了比较。右心房压力升高5 mmHg,分别在1小时和2小时后导致BNP mRNA水平增加1.4倍(P <.05)和2.2倍(P <.01),而ANP mRNA水平保持不变。长达2小时的拉伸也显著增加了右心房免疫反应性BNP(ir-BNP)水平(从15.8±2.2增加到20.1±1.2 ng/mg,P <.05)。转录抑制剂放线菌素D(10μg/mL)在1小时(P <.05)和2小时(P <.001)时完全抑制了拉伸诱导的心房BNP mRNA水平的增加,而蛋白质合成抑制剂环己酰亚胺(90μg/mL)对基础或直接机械拉伸诱导的右心房BNP mRNA水平的增加没有影响。此外,我们研究了酪氨酸激酶和蛋白激酶C活性在急性机械拉伸诱导的BNP合成增加中的作用。酪氨酸激酶抑制剂拉文达斯汀A(1μmol/L)和 tyrphostin A25(3μmol/L)以及蛋白激酶C抑制剂星形孢菌素(30 nmol/L)和白屈菜红碱(1μmol/L)在2小时时阻止了拉伸诱导的右心房ir-BNP浓度的增加。此外,白屈菜红碱抑制了心脏过载刺激的右心房BNP mRNA水平的增加。这些结果表明,机械拉伸导致的BNP mRNA水平的早期增加是由于转录激活增加,且与蛋白质合成无关。我们的结果还表明,蛋白激酶C和酪氨酸激酶活性可能参与了将心脏过载与心房BNP合成的改变联系起来的过程。