van Heijst J J, Vos J E
Department of Medical Physiology, University of Groningen, The Netherlands.
Biol Cybern. 1997 Sep;77(3):185-95. doi: 10.1007/s004220050379.
Presented in this paper is a neural network model that can be used to investigate the possible self-organizing mechanisms occurring during the early ontogeny of spinal neural circuits in the vertebrate motor system. The neural circuit is composed of multiple types of neurons which correspond to motorneurons, Renshaw cells and a hypothetical class of interneurons. While the connectivity of this circuit is genetically predetermined, the efficacies of these connections--the synaptic strengths--evolve in accordance with activity-dependent mechanisms which are initiated by the intrinsic, autonomous activity present in the developing spinal cord. Using Oja's rule, a modified Hebbian learning scheme for adjusting the values of the connections, the network stably self-organizes developing, in the process, reciprocally activated motorneuron pools analogous to those which exist in vivo.
本文提出了一种神经网络模型,该模型可用于研究脊椎动物运动系统中脊髓神经回路早期个体发育过程中可能出现的自组织机制。神经回路由多种类型的神经元组成,分别对应运动神经元、闰绍细胞和一类假设的中间神经元。虽然该回路的连接性是由基因预先确定的,但这些连接的效能——突触强度——会根据活动依赖机制而演变,这些机制由发育中的脊髓中存在的内在自主活动引发。使用奥贾规则(一种用于调整连接值的修正赫布学习方案),该网络在稳定自组织发育过程中,形成了与体内存在的相互激活的运动神经元池类似的结构。