Suppr超能文献

具有非线性生存概率的莱斯利矩阵模型中繁殖延迟的动态后果。

Dynamic consequences of reproductive delay in Leslie matrix models with nonlinear survival probabilities.

作者信息

Wikan A

机构信息

Harstad College, Norway.

出版信息

Math Biosci. 1997 Nov;146(1):37-62. doi: 10.1016/S0025-5564(97)00074-6.

Abstract

The dynamic consequences of reproductive delay in Leslie matrix models with nonlinear survival probabilities p are analyzed. In consideration of two-age classes, proof is presented for a wide range of p functions that, outside the strongly resonant cases, the transfer from stability to instability goes through a supercritical Hopf bifurcation and, moreover, that the nonlinear development has a strong resemblance of three or four cycles, either exact or approximate. In three-age class models, the tendency toward four-periodical dynamics is shown to be even more pronounced, a qualitative finding that gradually disappears as we turn to the higher-dimensional cases. We also prove that for models of any dimension n > 1 theme are regions in parameter space where the equilibrium is unstable at its creation and we demonstrate that the dynamics in this age-class extinguishing case is 2k.n cyclic.

摘要

分析了具有非线性生存概率p的莱斯利矩阵模型中繁殖延迟的动态后果。考虑两个年龄组,针对广泛的p函数给出了证明,即在非强共振情况下,从稳定到不稳定的转变通过超临界霍普夫分岔发生,而且非线性发展与三个或四个周期有很强的相似性,无论是精确的还是近似的。在三个年龄组模型中,四周期动态的趋势更为明显,这一定性发现随着我们转向更高维情况而逐渐消失。我们还证明,对于任何维度n>1的模型,参数空间中存在平衡在创建时就不稳定的区域,并且我们证明在这种年龄组灭绝情况下的动态是2k.n循环的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验