Hiraiwa M, Saitoh M, Arai N, Shiraishi T, Odani S, Uda Y, Ono T, O'Brien J S
Department of Neurosciences, Center for Molecular Genetics, University of California at San Diego, La Jolla 92093-0634, USA.
Biochim Biophys Acta. 1997 Sep 5;1341(2):189-99. doi: 10.1016/s0167-4838(97)00060-5.
Cathepsin A [EC 3.4.16.1], so called protective protein, occurs as an enzyme complex with lysosomal beta-galactosidase [3.2.1.23] and is involved in the stable enzymic expression of lysosomal sialidase [3.2.1.18]. In this study we investigated the enzymatic properties of cathepsin A in the bovine beta-galactosidase complex and how it is involved in the molecular multiplicities of the beta-galactosidase and sialidase complexes. Bovine protective protein homologous to the human protein had a molecular weight of 48 kDa on SDS-PAGE and cathepsin A activity optimum around pH 6.0. It hydrolyzed dipeptide substrates composed of hydrophobic amino acids much faster than any other type of substrate tested. This specificity was found to be conserved from human to a non-mammal, chicken. Immunoprecipitation using an anti beta-galactosidase antibody demonstrated that cathepsin A is a component of both the sialidase and beta-galactosidase complexes. The over 700 kDa sialidase complex depolymerized by a brief incubation at pH 7.5 and the sialidase was inactivated irreversibly via formation of an enzyme active smaller species of sialidase. The 669 kDa beta-galactosidase complex dissociated reversibly into a 120 kDa beta-galactosidase and a 170 kDa cathepsin A, but the 120 kDa beta-galactosidase, free from the cathepsin A, formed a 260 kDa aggregate under the same conditions. Inactivation of cathepsin A by heat treatment did not affect its complex forming activity. The 170 kDa protective protein dissociated into a 50 kDa one at pH 7.5, which no longer formed the complex. These findings indicate that the 170 kDa protective protein could be the minimum unit required for in vitro reconstitution of the complex, and that its complex forming activity is carried in a heat-stable domain. Both beta-galactosidase and cathepsin A activities were labile under the dissociated condition, indicating that it physiologically stabilizes not only beta-galactosidase but also itself by forming the complex.
组织蛋白酶A [EC 3.4.16.1],即所谓的保护蛋白,以与溶酶体β-半乳糖苷酶[3.2.1.23]形成的酶复合物形式存在,并参与溶酶体唾液酸酶[3.2.1.18]的稳定酶表达。在本研究中,我们研究了牛β-半乳糖苷酶复合物中组织蛋白酶A的酶学性质,以及它如何参与β-半乳糖苷酶和唾液酸酶复合物的分子多样性。与人类蛋白质同源的牛保护蛋白在SDS-PAGE上的分子量为48 kDa,组织蛋白酶A的活性在pH 6.0左右最佳。它水解由疏水氨基酸组成的二肽底物的速度比测试的任何其他类型的底物都要快得多。这种特异性在从人类到非哺乳动物鸡中都保守存在。使用抗β-半乳糖苷酶抗体进行免疫沉淀表明,组织蛋白酶A是唾液酸酶和β-半乳糖苷酶复合物的组成成分。超过700 kDa的唾液酸酶复合物在pH 7.5下短暂孵育会解聚,并且唾液酸酶通过形成活性较小的唾液酸酶物种而不可逆地失活。669 kDa的β-半乳糖苷酶复合物可逆地解离成120 kDa的β-半乳糖苷酶和170 kDa的组织蛋白酶A,但在相同条件下,不含组织蛋白酶A的120 kDaβ-半乳糖苷酶会形成260 kDa的聚集体。热处理使组织蛋白酶A失活并不影响其形成复合物的活性。170 kDa的保护蛋白在pH 7.5下解离成50 kDa的蛋白,后者不再形成复合物。这些发现表明,170 kDa的保护蛋白可能是体外重建该复合物所需的最小单位,并且其形成复合物的活性存在于一个热稳定结构域中。β-半乳糖苷酶和组织蛋白酶A的活性在解离条件下都不稳定,这表明它在生理上不仅通过形成复合物来稳定β-半乳糖苷酶,也稳定其自身。