Rafferty J A, Wibley J E, Speers P, Hickson I, Margison G P, Moody P C, Douglas K T
CRC Department of Carcinogenesis, Paterson Institute for Cancer Research, Christie Hospital (NHS) Trust, Manchester, UK.
Biochim Biophys Acta. 1997 Sep 26;1342(1):90-102. doi: 10.1016/s0167-4838(97)00095-2.
O6-Alkylguanine DNA-alkyltransferase (ATase) repairs toxic, mutagenic and carcinogenic O6-alkylguanine (O6-alkG) lesions in DNA by a highly conserved reaction involving the stoichiometric transfer of the alkyl group to the active centre cysteine residue of the ATase protein. In the Escherichia coli Ada ATase, which is effectively refactory to inhibition by O6-benzylguanine (O6-BzG), the residue corresponding to glycine-160 (G160) for the mammalian proteins of this class is replaced by a tryptophan (W). Therefore, to investigate the potential role of the G160 of the human ATase (hAT) protein in determining sensitivity to O6-BzG, site-directed mutagenesis was used to produce a mutant protein (hATG160W) substituted at position 160 with a W residue. The hATG160W mutant was found to be stably expressed and was 3- and 5-fold more sensitive than hAT to inactivation by O6-BzG, in the absence and presence of additional calf-thymus DNA respectively. A similar, DNA dependent increased sensitivity of the hATG160W mutant relative to wild-type was also found for O6-methylguanine mediated inactivation. The potential role of the W160 residue in stabilising the binding of the O6-alkG to the protein is discussed in terms of a homology model of the structure of hAT. The region occupied by G/W-160 forms the site of a putative hinge that could be important in the conformational change that is likely to occur on DNA binding. Three sequence motifs have been identified in this region which may influence O6-BzG access to the active site; YSGG or YSGGG in mammals (YAGG in E. coli Ogt, YAGS in Dat from Bacillus subtilis), YRWG in E. coli Ada and Salmonella typhimurium (but YKWS in Saccharomyces cerevisiae) or YRGGF in AdaB from B. Subtilis. Finally,conformational and stereoelectronic analysis of the putative transition states for the alkyl transfer from a series of inactivators of hAT, including O6-BzG was undertaken to rationalise the unexpected weak inhibition shown by the alpha-pi-unsaturated electrophiles.
O6-烷基鸟嘌呤DNA烷基转移酶(ATase)通过一种高度保守的反应修复DNA中有毒、致突变和致癌的O6-烷基鸟嘌呤(O6-alkG)损伤,该反应涉及将烷基化学计量转移至ATase蛋白的活性中心半胱氨酸残基。在对O6-苄基鸟嘌呤(O6-BzG)抑制作用具有有效抗性的大肠杆菌Ada ATase中,此类哺乳动物蛋白中对应于甘氨酸-160(G160)的残基被色氨酸(W)取代。因此,为了研究人ATase(hAT)蛋白的G160在决定对O6-BzG敏感性方面的潜在作用,采用定点诱变产生了在第160位被W残基取代的突变蛋白(hATG160W)。发现在分别不存在和存在额外小牛胸腺DNA的情况下,hATG160W突变体能够稳定表达,并且相对于hAT对O6-BzG失活的敏感性分别高3倍和5倍。对于O6-甲基鸟嘌呤介导的失活,也发现hATG160W突变体相对于野生型具有类似的、依赖于DNA的敏感性增加。根据hAT结构的同源模型讨论了W160残基在稳定O6-alkG与蛋白结合方面的潜在作用。G/W-160占据的区域形成了一个假定铰链的位点,这可能在DNA结合时可能发生的构象变化中起重要作用。在该区域已鉴定出三个序列基序,它们可能影响O6-BzG进入活性位点;哺乳动物中的YSGG或YSGGG(大肠杆菌Ogt中的YAGG、枯草芽孢杆菌Dat中的YAGS)、大肠杆菌Ada和鼠伤寒沙门氏菌中的YRWG(但酿酒酵母中的YKWS)或枯草芽孢杆菌AdaB中的YRGGF。最后,对包括O6-BzG在内的一系列hAT失活剂的烷基转移假定过渡态进行了构象和立体电子分析,以解释α-π-不饱和亲电试剂表现出的意外弱抑制作用。