Suppr超能文献

Development of immortalized human cerebromicrovascular endothelial cell line as an in vitro model of the human blood-brain barrier.

作者信息

Muruganandam A, Herx L M, Monette R, Durkin J P, Stanimirovic D B

机构信息

Cellular Neurobiology Group, Institute of Biological Sciences, National Research Council of Canada, Ottawa, Ontario.

出版信息

FASEB J. 1997 Nov;11(13):1187-97. doi: 10.1096/fasebj.11.13.9367354.

Abstract

The objective of this study was to generate an immortal cell line representative of specialized human brain microvascular endothelia forming the blood-brain barrier (BBB) in vivo. Human capillary and microvascular endothelial cells (HCEC) were transfected with the plasmid pSV3-neo coding for the SV40 large T antigen and the neomycin gene. The neomycin-resistant transfected cells overcame proliferative senescence, and after a 6-8 wk period of crisis produced immortalization-competent cell colonies. Single-cell clones of near-diploid genotype were isolated from these colonies, propagated, and characterized. Immortalized HCEC (SV-HCEC) exhibited accelerated proliferation rates, but remained serum and anchorage dependent and retained the characteristic cobblestone morphology at confluence. SV-HCEC displayed a stable nuclear expression of SV40 large T antigen, lacked the invasiveness of transformed cells, and maintained major phenotypic properties of early passage control cells including expression of factor VIII-related antigen, uptake of acetylated low-density lipoprotein, binding of fluorescently labeled lectins, expression of transferrin receptor and transferrin receptor-mediated endocytosis, and high activities of the BBB-specific enzymes alkaline phosphatase and gamma-glutamyl transpeptidase. The diffusion of radiolabeled sucrose across SV-HCEC monolayers was fivefold lower than that observed with human lung microvascular endothelial cells. Furthermore, media conditioned by fetal human astrocytes increased the transendothelial electrical resistance of SV-HCEC monolayers by 2.5-fold. Therefore, this newly established human cell line expressing the specialized phenotype of BBB endothelium may serve as a readily available in vitro model for studying the properties of the human BBB.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验