Suppr超能文献

存在两种负责激活转导蛋白的视紫红质中间体。

Presence of two rhodopsin intermediates responsible for transducin activation.

作者信息

Tachibanaki S, Imai H, Mizukami T, Okada T, Imamoto Y, Matsuda T, Fukada Y, Terakita A, Shichida Y

机构信息

Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-01, Japan.

出版信息

Biochemistry. 1997 Nov 18;36(46):14173-80. doi: 10.1021/bi970932o.

Abstract

To identify how many rhodopsin intermediates interact with retinal G-protein transducin, the photobleaching process of chicken rhodopsin has been investigated in the presence or absence of transducin by means of time-resolved low-temperature spectroscopy. Singular value decomposition (SVD) analysis of the spectral data showed that a new intermediate called meta Ib is present between formally identified metarhodopsin I (now referred to as meta Ia) and metarhodopsin II (meta II). Since the absorption maximum of meta Ib (460 nm) is similar to that of meta Ia (480 nm), but considerably different from that of meta II (380 nm), meta Ib should have a protonated retinylidene Schiff base as its chromophore. Whereas transducin showed no effect on the conversion process between lumirhodopsin (lumi) and meta Ia, it affected the process between meta Ia and meta Ib and that between meta Ib and meta II. These results suggest that at least two intermediates (meta Ib and meta II) interact with transducin. The addition of GTPgammaS had no effect on the meta Ib-transducin interaction, while it abolished the ability of transducin to interact with meta II. Thus, meta Ib only binds to transducin, while meta II catalyzes a GDP-GTP exchange in transducin. These results suggest that deprotonation of the Schiff base chromophore is not necessary for the binding to transducin, while changes in protein structure including Schiff base deprotonation are needed to induce the GDP-GTP exchange in transducin.

摘要

为了确定有多少视紫红质中间体与视网膜G蛋白转导素相互作用,通过时间分辨低温光谱法,在有或没有转导素存在的情况下,对鸡视紫红质的光漂白过程进行了研究。对光谱数据的奇异值分解(SVD)分析表明,在正式鉴定的视紫红质I(现称为视紫红质Ia)和视紫红质II(视紫红质II)之间存在一种新的中间体,称为视紫红质Ib。由于视紫红质Ib的最大吸收波长(460nm)与视紫红质Ia的最大吸收波长(480nm)相似,但与视紫红质II的最大吸收波长(380nm)有很大不同,视紫红质Ib应该以质子化的视黄醛席夫碱作为其发色团。虽然转导素对视紫红质(lumi)和视紫红质Ia之间的转化过程没有影响,但它影响了视紫红质Ia和视紫红质Ib之间以及视紫红质Ib和视紫红质II之间的过程。这些结果表明,至少有两种中间体(视紫红质Ib和视紫红质II)与转导素相互作用。添加GTPγS对视紫红质Ib-转导素相互作用没有影响,而它消除了转导素与视紫红质II相互作用的能力。因此,视紫红质Ib只与转导素结合,而视紫红质II催化转导素中的GDP-GTP交换。这些结果表明,席夫碱发色团的去质子化对于与转导素的结合不是必需的,而诱导转导素中GDP-GTP交换需要包括席夫碱去质子化在内的蛋白质结构变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验