Hübinger A, Knode O, Susanto F, Reinauer H, Gries F A
Diabetes Research Institute, Düsseldorf, Germany.
Horm Metab Res. 1997 Sep;29(9):436-9. doi: 10.1055/s-2007-979072.
We studied the influence of Etomoxir on fat and carbohydrate oxidation, and the influence of these changes on insulin sensitivity in type 2 diabetic patients. Etomoxir is an oxirane carboxylic acid derivative that specifically inactivates carnitine-acyltransferase I (CAT I, EC: 2.3.1.21), the key enzyme for the transport of long-chain acyl-CoA compounds into the mitochondria. Thus, oxidation of fatty acids should be reduced by this drug and glucose utilisation be increased according to the Randle mechanism. In order to test this hypothesis, we measured oxidative and non-oxidative glucose utilisation using the euglycaemic hyperinsulinaemic clamp technique, the isotope dilution mass spectrometry (IDMS) method with stable isotopes (6,6-D2-glucose) and indirect calorimetry. The clamps lasted 5 hours, indirect calorimetry was performed during the last hour and calculations of glucose disposal were based on steady state conditions during the last 30 minutes. Twelve type 2 diabetic patients were treated with 100 mg etomoxir/per day for 3 days in this placebo-controlled, randomized, double-blind study. Treatment resulted in a significant increase in carbohydrate oxidation (from 72 to 113 g/24 h, p = 0.039), decrease in fat oxidation (from 139 to 114 g/24 h, p = 0.037), and decrease of the glucose appearance rate (RA) in the basal state (from 1.85 to 1.70 mg/kg min., p = 0.014). During the euglycaemic clamp neither RA (3.30 and 3.20 mg/kg min., p = 0.471) nor the glucose infusion rate (4.28 and 4.53 mg/kg min., p = 0.125) showed significant changes. In addition, no significant changes in glucose and fat oxidation were detected during the hyperinsulinaemic clamp. Under basal conditions non-oxidative glucose utilisation was decreased by etomoxir (1.26 and 0.80 mg/ kg x min). Thus, we could demonstrate a decrease in fat and increase in glucose oxidation by etomoxir, but non-oxidative glucose utilisation was decreased. No significant changes could be demonstrated under clamp conditions.
我们研究了依托莫司对2型糖尿病患者脂肪和碳水化合物氧化的影响,以及这些变化对胰岛素敏感性的影响。依托莫司是一种环氧乙烷羧酸衍生物,它能特异性地使肉碱 - 酰基转移酶I(CAT I,EC:2.3.1.21)失活,该酶是长链酰基辅酶A化合物转运至线粒体的关键酶。因此,根据兰德尔机制,这种药物应会减少脂肪酸氧化并增加葡萄糖利用。为了验证这一假设,我们使用正常血糖高胰岛素钳夹技术、稳定同位素(6,6 - D2 - 葡萄糖)的同位素稀释质谱法(IDMS)和间接量热法测量了氧化和非氧化葡萄糖利用情况。钳夹持续5小时,在最后一小时进行间接量热法测量,葡萄糖处置量的计算基于最后30分钟的稳态条件。在这项安慰剂对照、随机、双盲研究中,12名2型糖尿病患者每天服用100毫克依托莫司,共3天。治疗导致碳水化合物氧化显著增加(从72克/24小时增至113克/24小时,p = 0.039),脂肪氧化减少(从139克/24小时降至114克/24小时,p = 0.037),基础状态下葡萄糖出现率(RA)降低(从1.85毫克/千克·分钟降至1.70毫克/千克·分钟,p = 0.014)。在正常血糖钳夹期间,RA(3.30和3.20毫克/千克·分钟,p = 0.471)和葡萄糖输注率(4.28和4.53毫克/千克·分钟,p = 0.125)均未显示出显著变化。此外,在高胰岛素钳夹期间,未检测到葡萄糖和脂肪氧化有显著变化。在基础条件下,依托莫司使非氧化葡萄糖利用减少(1.26和0.80毫克/千克·分钟)。因此,我们可以证明依托莫司可减少脂肪并增加葡萄糖氧化,但非氧化葡萄糖利用减少。在钳夹条件下未显示出显著变化。