Suppr超能文献

根据大鼠数据估算人体中外源化合物的半衰期:log P的影响

Estimating xenobiotic half-lives in humans from rat data: influence of log P.

作者信息

Sarver J G, White D, Erhardt P, Bachmann K

机构信息

Department of Pharmacology, The University of Toledo, Toledo, OH 43606 USA.

出版信息

Environ Health Perspect. 1997 Nov;105(11):1204-9. doi: 10.1289/ehp.971051204.

Abstract

The nature of empirical allometric expressions relating dispositional and kinetic parameters for a given xenobiotic across multiple mammalian species is well known. It has also been demonstrated that a simple allometric relationship may be used to predict kinetic parameters for humans based merely on data for multiple xenobiotics from rats. We decided to explore reasons for the variance in the data arising from the latter method. We were particularly interested in learning whether any physicochemical characteristics of xenobiotics might account for outlying data points (i.e., poor prediction of human half-life from rat half-life). We have explored the influence of lipid solubility as reflected by a xenobiotic's log P value because adipose tissue comprises a significantly larger percentage of total body weight in humans than in rats. We used half-life data from the literature for 127 xenobiotics. A data subset of 102 xenobiotics for which we were able to find estimates of log P values, including several with extremely large log P values, was also analyzed. First and second order models, including and excluding log P, were compared. The simplest of these models can be recast as the familiar allometric relationship having the form Y = a(Xb). The remaining models can be seen as extensions of this relationship. Our results suggest that incorporation of log P into the prediction of xenobiotic half-life in humans from rat half-life data is important only for xenobiotics with extremely large log P values such as dioxins and polychlorinated biphenyls. Moreover, a second order model in logarithm of rat half-life accommodates all data points very well, without specifically accounting for log P values.

摘要

已知在多种哺乳动物物种中,描述给定外源化合物处置和动力学参数的经验异速生长表达式的性质。也已证明,仅基于大鼠多种外源化合物的数据,简单的异速生长关系可用于预测人类的动力学参数。我们决定探究后一种方法产生的数据差异的原因。我们特别感兴趣的是了解外源化合物的任何物理化学特征是否可能解释异常数据点(即根据大鼠半衰期对人类半衰期的预测不佳)。我们探讨了以外源化合物的log P值反映的脂溶性的影响,因为脂肪组织在人体中占总体重的百分比明显高于大鼠。我们使用了文献中127种外源化合物的半衰期数据。还分析了102种外源化合物的数据子集,我们能够找到其log P值的估计值,包括几种log P值极大的化合物。比较了包含和排除log P的一阶和二阶模型。这些模型中最简单的可以改写为熟悉的异速生长关系形式Y = a(X^b)。其余模型可视为这种关系的扩展。我们的结果表明,将log P纳入从大鼠半衰期数据预测人类外源化合物半衰期的过程中,仅对二恶英和多氯联苯等log P值极大的外源化合物很重要。此外,大鼠半衰期对数的二阶模型能很好地拟合所有数据点,而无需特别考虑log P值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0855/1470336/cc7d37ed87b3/envhper00324-0053-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验