Hering S, Aczél S, Kraus R L, Berjukow S, Striessnig J, Timin E N
Institut für Biochemische Pharmakologie, Innsbruck, Austria.
Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13323-8. doi: 10.1073/pnas.94.24.13323.
The role of channel inactivation in the molecular mechanism of calcium (Ca2+) channel block by phenylalkylamines (PAA) was analyzed by designing mutant Ca2+ channels that carry the high affinity determinants of the PAA receptor site [Hockerman, G. H., Johnson, B. D., Scheuer, T., and Catterall, W. A. (1995) J. Biol. Chem. 270, 22119-22122] but inactivate at different rates. Use-dependent block by PAAs was studied after expressing the mutant Ca2+ channels in Xenopus oocytes. Substitution of single putative pore-orientated amino acids in segment IIIS6 by alanine (F-1499-A, F-1500-A, F-1510-A, I-1514-A, and F-1515-A) gradually slowed channel inactivation and simultaneously reduced inhibition of barium currents (I(Ba)) by (-)D600 upon depolarization by 100 ms steps at 0.1 Hz. This apparent reduction in drug sensitivity was only evident if test pulses were applied at a low frequency of 0.1 Hz and almost disappeared at the frequency of 1 Hz. (-)D600 slowed I(Ba) recovery after maintained membrane depolarization (1-3 sec) to a comparable extent in all channel constructs. A drug-induced delay in the onset of I(Ba) recovery from inactivation suggests that PAAs promote the transition to a deep inactivated channel conformation. These findings indicate that apparent PAA sensitivity of Ca2+ channels is not only defined by drug interaction with its receptor site but also crucially dependent on intrinsic gating properties of the channel molecule. A molecular model for PAA-Ca2+ channel interaction that accounts for the relationship between drug induced inactivation and channel block by PAA is proposed.
通过设计携带苯烷基胺(PAA)受体位点高亲和力决定簇的突变型钙(Ca2+)通道[霍克曼,G. H.,约翰逊,B. D.,舍尔,T.,以及卡特拉尔,W. A.(1995年)《生物化学杂志》270卷,22119 - 22122页],但这些通道以不同速率失活,分析了通道失活在PAA对钙通道阻滞分子机制中的作用。在非洲爪蟾卵母细胞中表达突变型Ca2+通道后,研究了PAA的使用依赖性阻滞。用丙氨酸取代IIIS6段中单个假定的面向孔的氨基酸(F - 1499 - A、F - 1500 - A、F - 1510 - A、I - 1514 - A和F - 1515 - A)逐渐减缓通道失活,同时在0.1 Hz下以100 ms步长去极化时,降低了( - )D600对钡电流(I(Ba))的抑制作用。只有在0.1 Hz的低频下施加测试脉冲时,这种药物敏感性的明显降低才明显,而在1 Hz频率下几乎消失。在所有通道构建体中,( - )D600在维持膜去极化(1 - 3秒)后减缓I(Ba)恢复的程度相当。药物诱导的I(Ba)从失活恢复起始的延迟表明PAA促进了向深度失活通道构象的转变。这些发现表明,Ca2+通道对PAA的明显敏感性不仅由药物与其受体位点的相互作用决定,还关键取决于通道分子的内在门控特性。提出了一个PAA - Ca2+通道相互作用的分子模型,该模型解释了药物诱导的失活与PAA对通道阻滞之间的关系。