Macfarlane R D, Bondarenko P V, Cockrill S L, Cruzado I D, Koss W, McNeal C J, Spiekerman A M, Watkins L K
Department of Chemistry, Texas A&M University, College Station 77843-3255, USA.
Electrophoresis. 1997 Sep;18(10):1796-806. doi: 10.1002/elps.1150181014.
A new program for lipoprotein characterization is outlined where capillary electrophoresis (CE) plays a central role in the analysis of intact lipoprotein serum components and the apoprotein domains. The first characterization step involves separation and particle density analysis of very low-, low-, and high-density lipoprotein fractions (VLDL, LDL, HDL) by ultracentrifugation and image analysis. VLDL, HDL, and LDL fractions are analyzed by capillary electrophoresis. Sodium dodecyl sulfate (SDS) at low concentrations in the background electrolyte used in the CE analysis is incorporated into the lipoprotein particle without appreciable delipidation, as determined by ultracentrifuge particle density analysis. Increasing the concentration of SDS results in extensive delipidation, resulting in the release of apoproteins (apo) which are detected as components of the electropherogram. Apo B-100 is detected in the delipidated VLDL and LDL fractions along with micelles of the lipids. Micelles from LDL delipidation have uniform charge densities. Apo A-I and A-II are detected in the HDL fraction. A new method for lipoprotein delipidation is introduced where the lipoprotein fraction is adsorbed on a reversed-phase hydrophobic cartridge. Delipidation and recovery of the apoprotein fractions is made by serial elutions with acetonitrile. CE of the lipid-free apoprotein mixture shows the presence of apoC-I,II,III and apoE in the VLDL fraction, and apoA-I,II apoC-I and apoE in the HDL fraction. Electrospray ionization mass spectrometry analysis gives the isoform distribution for each apoprotein. The identification of the apoproteins in the electropherograms is the first step in developing a CE-based quantitation method for measuring serum levels of these apoproteins and their distribution between the lipoprotein fractions. The assay described in this paper is being used as a level 2 and 3 cardiac risk profile analysis for individuals with normal lipid profiles who have a documented or family history of cardiovascular disease.
本文概述了一种新的脂蛋白表征程序,其中毛细管电泳(CE)在完整脂蛋白血清成分和载脂蛋白结构域的分析中起着核心作用。第一个表征步骤包括通过超速离心和图像分析对极低密度、低密度和高密度脂蛋白组分(VLDL、LDL、HDL)进行分离和颗粒密度分析。通过毛细管电泳分析VLDL、HDL和LDL组分。在CE分析中使用的背景电解质中低浓度的十二烷基硫酸钠(SDS)会掺入脂蛋白颗粒中,而不会发生明显的脱脂现象,这通过超速离心颗粒密度分析得以确定。增加SDS的浓度会导致广泛的脱脂,从而导致载脂蛋白(apo)的释放,这些载脂蛋白被检测为电泳图的组分。在脱脂的VLDL和LDL组分中检测到apo B-100以及脂质的胶束。LDL脱脂产生的胶束具有均匀的电荷密度。在HDL组分中检测到apo A-I和A-II。引入了一种新的脂蛋白脱脂方法,即将脂蛋白组分吸附在反相疏水柱上。通过用乙腈进行连续洗脱来实现载脂蛋白组分的脱脂和回收。无脂质载脂蛋白混合物的CE显示在VLDL组分中存在apoC-I、II、III和apoE,在HDL组分中存在apoA-I、II、apoC-I和apoE。电喷雾电离质谱分析给出了每种载脂蛋白的异构体分布。在电泳图中鉴定载脂蛋白是开发基于CE的定量方法以测量这些载脂蛋白的血清水平及其在脂蛋白组分之间分布的第一步。本文所述的检测方法正被用作对脂质谱正常但有心血管疾病记录或家族病史的个体进行二级和三级心脏风险评估分析。