Standaert M L, Galloway L, Karnam P, Bandyopadhyay G, Moscat J, Farese R V
J. A. Haley Veterans' Hospital Research Service and Departments of Internal Medicine and Biochemistry/Molecular Biology, University of South Florida College of Medicine, Tampa, Florida 33612, USA.
J Biol Chem. 1997 Nov 28;272(48):30075-82. doi: 10.1074/jbc.272.48.30075.
Insulin provoked rapid increases in enzyme activity of immunoprecipitable protein kinase C-zeta (PKC-zeta) in rat adipocytes. Concomitantly, insulin provoked increases in 32P labeling of PKC-zeta both in intact adipocytes and during in vitro assay of immunoprecipitated PKC-zeta; the latter probably reflected autophosphorylation, as it was inhibited by the PKC-zeta pseudosubstrate. Insulin-induced activation of immunoprecipitable PKC-zeta was inhibited by LY294002 and wortmannin; this suggested dependence upon phosphatidylinositol (PI) 3-kinase. Accordingly, activation of PI 3-kinase by a pYXXM-containing peptide in vitro resulted in a wortmannin-inhibitable increase in immunoprecipitable PKC-zeta enzyme activity. Also, PI-3,4-(PO4)2, PI-3,4,5-(PO4)3, and PI-4,5-(PO4)2 directly stimulated enzyme activity and autophosphoralytion in control PKC-zeta immunoprecipitates to levels observed in insulin-treated PKC-zeta immunoprecipitates. In studies of glucose transport, inhibition of immunoprecipitated PKC-zeta enzyme activity in vitro by both the PKC-zeta pseudosubstrate and RO 31-8220 correlated well with inhibition of insulin-stimulated glucose transport in intact adipocytes. Also, in adipocytes transiently expressing hemagglutinin antigen-tagged GLUT4, co-transfection of wild-type or constitutive PKC-zeta stimulated hemagglutinin antigen-GLUT4 translocation, whereas dominant-negative PKC-zeta partially inhibited it. Our findings suggest that insulin activates PKC-zeta through PI 3-kinase, and PKC-zeta may act as a downstream effector of PI 3-kinase and contribute to the activation of GLUT4 translocation.
胰岛素可使大鼠脂肪细胞中免疫沉淀的蛋白激酶C-ζ(PKC-ζ)的酶活性迅速升高。同时,胰岛素可使完整脂肪细胞中以及免疫沉淀的PKC-ζ体外检测期间的PKC-ζ的32P标记增加;后者可能反映了自身磷酸化,因为它受到PKC-ζ假底物的抑制。LY294002和渥曼青霉素可抑制胰岛素诱导的免疫沉淀PKC-ζ的激活;这表明其依赖于磷脂酰肌醇(PI)3-激酶。因此,体外含pYXXM的肽激活PI 3-激酶会导致免疫沉淀的PKC-ζ酶活性出现渥曼青霉素可抑制的增加。此外,PI-3,4-(PO4)2、PI-3,4,5-(PO4)3和PI-4,5-(PO4)2可直接刺激对照PKC-ζ免疫沉淀物中的酶活性和自身磷酸化,使其达到胰岛素处理的PKC-ζ免疫沉淀物中观察到的水平。在葡萄糖转运研究中,PKC-ζ假底物和RO 31-8220在体外对免疫沉淀的PKC-ζ酶活性的抑制与完整脂肪细胞中胰岛素刺激的葡萄糖转运的抑制密切相关。此外,在瞬时表达血凝素抗原标记的GLUT4的脂肪细胞中,野生型或组成型PKC-ζ的共转染刺激了血凝素抗原-GLUT4易位,而显性负性PKC-ζ则部分抑制了它。我们的研究结果表明,胰岛素通过PI 3-激酶激活PKC-ζ,并且PKC-ζ可能作为PI 3-激酶的下游效应物,并有助于激活GLUT4易位。