Suppr超能文献

Turnover of F1F0-ATP synthase subunit 9 and other proteolipids in normal and Batten disease fibroblasts.

作者信息

Tanner A, Shen B H, Dice J F

机构信息

Department of Physiology, Tufts University School of Medicine, Boston, MA 02111, USA.

出版信息

Biochim Biophys Acta. 1997 Oct 24;1361(3):251-62. doi: 10.1016/s0925-4439(97)00048-3.

Abstract

Fibroblasts derived from patients with late infantile neuronal ceroid lipofucsinosis (NCL) and from a mouse model of NCL are similar to cells in intact animals in that they accumulate subunit 9 of mitochondrial F1F0-ATP synthase (F-ATPase) (Tanner, A., Dice, J.F., Cell Biol. Int. 19 (1995) 71-75). We now report no differences in the synthetic rates of F-ATPase subunit 9 in such affected cells when compared to control cells. However, the degradation rates of F-ATPase subunit 9 are reduced in both the affected human and mouse cells. This reduced degradation applies only to subunit 9 and the homologous vacuolar ATPase subunit among five distinct, reproducible proteolipid bands analyzed. Approximately 15% of newly synthesized F-ATPase subunit 9 is rapidly degraded in control cells, but this rapidly degraded component is absent in both the human and mouse NCL fibroblasts. At confluence, when the accumulated F-ATPase subunit 9 transiently disappears from human NCL fibroblasts, there is an increased degradation of all proteolipids. The pathway of degradation that is enhanced at confluence is likely to correspond to lysosomal macroautophagy. We confirmed that lysosomes were able to degrade F-ATPase subunit 9 after endocytosis of radiolabeled mitochondria. Human NCL fibroblasts were less active than control cells in this lysosomal degradation of endocytosed F-ATPase subunit 9. However, this difference was not specific for F-ATPase subunit 9 since it also applied to total endocytosed mitochondrial protein. We conclude that degradation of F-ATPase subunit 9 can occur by multiple pathways and that a mitochondrial pathway of proteolysis is defective in the late infantile human and mouse forms of NCL.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验