Yung YL, Miller CE
Y. L. Yung, Division of Geological and Planetary Sciences, California Institute of Technology, Mail Stop 150-21, Pasadena, CA 91125, USA. C. L. Miller, Atmospheric Kinetics and Photochemistry Group, Jet Propulsion Laboratory, California I.
Science. 1997 Dec 5;278(5344):1778-80. doi: 10.1126/science.278.5344.1778.
We propose an isotopic fractionation mechanism, based on photolytic destruction, to explain the 15N/14N and 18O/16O fractionation of stratospheric nitrous oxide (N2O) and reconcile laboratory experiments with atmospheric observations. The theory predicts that (i) the isotopomers 15N14N16O and 14N15N16O have very different isotopic fractionations in the stratosphere, and (ii) laboratory photolysis experiments conducted at 205 nanometers should better simulate the observed isotopic fractionation of stratospheric N2O. Modeling results indicate that there is no compelling reason to invoke a significant chemical source of N2O in the middle atmosphere and that individual N2O isotopomers might be useful tracers of stratospheric air parcel motion.
我们提出一种基于光解破坏的同位素分馏机制,以解释平流层一氧化二氮(N₂O)的¹⁵N/¹⁴N和¹⁸O/¹⁶O分馏现象,并使实验室实验与大气观测结果相协调。该理论预测:(i)¹⁵N¹⁴N¹⁶O和¹⁴N¹⁵N¹⁶O这两种同位素异构体在平流层中具有非常不同的同位素分馏情况;(ii)在205纳米处进行的实验室光解实验应能更好地模拟平流层N₂O观测到的同位素分馏。模拟结果表明,没有令人信服的理由认为中层大气中存在大量N₂O的化学源,而且单个N₂O同位素异构体可能是平流层气团运动的有用示踪剂。