Suppr超能文献

A fluorescent p53GFP fusion protein facilitates its detection in mammalian cells while retaining the properties of wild-type p53.

作者信息

Norris P S, Haas M

机构信息

Department of Biology and Cancer Center, University of California, San Diego, La Jolla 92093-0063, USA.

出版信息

Oncogene. 1997 Oct;15(18):2241-7. doi: 10.1038/sj.onc.1201406.

Abstract

Tumor progression is often characterized by the cumulative loss of crucial cell cycle control genes and the concomitant loss of genome stability. Progressed tumors are often resistant to conventional therapies. Gene-transfer of key growth-regulatory genes, such as the p53 gene, is one potential approach to treating advanced tumors. To this end, we have produced high-titer retroviruses, based on the pCL vector system, which encode a chimeric protein consisting of human wild-type p53 and the green fluorescent protein (wtp53GFP). The fluorescent wtp53GFP protein and the wild-type p53 protein are recognized equally by several monoclonal p53-specific antibodies, have similar half-lives and function comparably in transactivating a p53-responsive element as well as in suppressing the growth of tumor cells. Additionally, due to its fluorescent nature, wtp53GFP facilitates the direct identification of cells expressing the p53 fusion protein. Combining the features of the pCL retroviral production system with the highly visible green fluorescent protein provides a potent tool for the delivery of p53 into cells and the subsequent detection of the protein, both in vitro and in vivo.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验