Suppr超能文献

生物膜中的鞘脂组织:模型膜的物理研究揭示了什么。

Sphingolipid organization in biomembranes: what physical studies of model membranes reveal.

作者信息

Brown R E

机构信息

The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.

出版信息

J Cell Sci. 1998 Jan;111 ( Pt 1)(0 1):1-9. doi: 10.1242/jcs.111.1.1.

Abstract

Recent cell biological studies suggest that sphingolipids and cholesterol may cluster in biomembranes to form raft-like microdomains. Such lipid domains are postulated to function as platforms involved in the lateral sorting of certain proteins during their trafficking within cells as well as during signal transduction events. Here, the physical interactions that occur between cholesterol and sphingolipids in model membrane systems are discussed within the context of microdomain formation. A model is presented in which the role of cholesterol is refined compared to earlier models.

摘要

最近的细胞生物学研究表明,鞘脂和胆固醇可能在生物膜中聚集形成筏样微结构域。据推测,这种脂质结构域在某些蛋白质在细胞内运输以及信号转导过程中作为侧向分选的平台发挥作用。在此,在微结构域形成的背景下讨论了模型膜系统中胆固醇与鞘脂之间发生的物理相互作用。提出了一个模型,其中胆固醇的作用与早期模型相比得到了细化。

相似文献

1
Sphingolipid organization in biomembranes: what physical studies of model membranes reveal.
J Cell Sci. 1998 Jan;111 ( Pt 1)(0 1):1-9. doi: 10.1242/jcs.111.1.1.
2
Actively maintained lipid nanodomains in biomembranes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Feb;77(2 Pt 1):021907. doi: 10.1103/PhysRevE.77.021907. Epub 2008 Feb 11.
3
Lipid rafts as a membrane-organizing principle.
Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621.
4
Lipid-protein interplay and lateral organization in biomembranes.
Chem Phys Lipids. 2015 Jul;189:48-55. doi: 10.1016/j.chemphyslip.2015.05.008. Epub 2015 May 30.
5
Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains.
Curr Opin Cell Biol. 1997 Aug;9(4):534-42. doi: 10.1016/s0955-0674(97)80030-0.
6
Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack.
Semin Immunol. 2001 Apr;13(2):89-97. doi: 10.1006/smim.2000.0300.
7
Role of sphingolipids in the biogenesis of membrane domains.
Biochim Biophys Acta. 2001 Jun 29;1532(3):149-61. doi: 10.1016/s1388-1981(01)00128-7.
8
Functions of lipid rafts in biological membranes.
Annu Rev Cell Dev Biol. 1998;14:111-36. doi: 10.1146/annurev.cellbio.14.1.111.
9
The state of lipid rafts: from model membranes to cells.
Annu Rev Biophys Biomol Struct. 2003;32:257-83. doi: 10.1146/annurev.biophys.32.110601.142439. Epub 2003 Jan 16.
10
Order of lipid phases in model and plasma membranes.
Proc Natl Acad Sci U S A. 2009 Sep 29;106(39):16645-50. doi: 10.1073/pnas.0908987106. Epub 2009 Sep 15.

引用本文的文献

2
A Generalized Helfrich Free Energy Framework for Multicomponent Fluid Membranes.
Membranes (Basel). 2025 Jun 17;15(6):182. doi: 10.3390/membranes15060182.
3
Glutamate, Gangliosides, and the Synapse: Electrostatics at Work in the Brain.
Int J Mol Sci. 2024 Aug 6;25(16):8583. doi: 10.3390/ijms25168583.
5
Life-Limiting Peripheral Organ Dysfunction in Feline Sandhoff Disease Emerges after Effective CNS Gene Therapy.
Ann Neurol. 2023 Nov;94(5):969-986. doi: 10.1002/ana.26756. Epub 2023 Aug 16.
6
The formation of migrasomes is initiated by the assembly of sphingomyelin synthase 2 foci at the leading edge of migrating cells.
Nat Cell Biol. 2023 Aug;25(8):1173-1184. doi: 10.1038/s41556-023-01188-8. Epub 2023 Jul 24.
7
Effect of sphingosine and phytosphingosine ceramide ratio on lipid arrangement and barrier function in skin lipid models.
J Lipid Res. 2023 Aug;64(8):100400. doi: 10.1016/j.jlr.2023.100400. Epub 2023 Jun 8.
8
Cholesterol as a key player in amyloid β-mediated toxicity in Alzheimer's disease.
Front Mol Neurosci. 2022 Aug 25;15:937056. doi: 10.3389/fnmol.2022.937056. eCollection 2022.
9
A New Hypothesis for Alzheimer's Disease: The Lipid Invasion Model.
J Alzheimers Dis Rep. 2022 Mar 25;6(1):129-161. doi: 10.3233/ADR-210299. eCollection 2022.

本文引用的文献

2
Apical targeting in polarized epithelial cells: There's more afloat than rafts.
Trends Cell Biol. 1997 Oct;7(10):393-9. doi: 10.1016/S0962-8924(97)01130-6.
3
Inhibition of sphingolipid synthesis: effects on glycosphingolipid-GPI-anchored protein microdomains.
Trends Cell Biol. 1995 Oct;5(10):377-80. doi: 10.1016/s0962-8924(00)89078-9.
4
Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis.
Trends Cell Biol. 1994 Jul;4(7):231-5. doi: 10.1016/0962-8924(94)90114-7.
5
Guilty by insolubility--does a protein's detergent insolubility reflect a caveolar location?
Trends Cell Biol. 1995 May;5(5):187-9. doi: 10.1016/s0962-8924(00)88990-4.
6
Thermotropic behavior of galactosylceramides with cis-monoenoic fatty acyl chains.
Biochim Biophys Acta. 1998 Jul 17;1372(2):347-58. doi: 10.1016/s0005-2736(98)00076-5.
7
Lipid microdomains in dimyristoylphosphatidylcholine-ceramide liposomes.
Chem Phys Lipids. 1997 Aug 8;88(1):1-13. doi: 10.1016/s0009-3084(97)00040-6.
10
Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains.
Curr Opin Cell Biol. 1997 Aug;9(4):534-42. doi: 10.1016/s0955-0674(97)80030-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验