Suppr超能文献

30年后——索尔·斯皮格尔曼和莱斯利·奥格尔体外进化研究的新方法。值莱斯利·奥格尔70岁生日之际,谨以此文敬献给她。

30 years later--a new approach to Sol Spiegelman's and Leslie Orgel's in vitro evolutionary studies. Dedicated to Leslie Orgel on the occasion of his 70th birthday.

作者信息

Oehlenschläger F, Eigen M

机构信息

Max-Planck-Institut für Biophysikalische Chemie, Göttingen.

出版信息

Orig Life Evol Biosph. 1997 Dec;27(5-6):437-57. doi: 10.1023/a:1006501326129.

Abstract

The conditions necessary for evolution are amplification, mutagenesis and selection. Here we describe the evolutionary response of an in vitro replicating system to the selection pressure for fast growth and show what happens to the amplified molecules within this replication system. Our emphasis is on methodology, on the monitoring and the automation of experiments in molecular evolution. In order to perform in vitro studies on the evolution of RNA molecules, a modified self-sustained sequence replication (3SR) method was used. In the first step of the 3SR reaction, the RNA template is reversely transcribed by HIV-1 reverse transcriptase, followed by a second strand synthesis and the transcription of the resulting dsDNA by T7 RNA polymerase. The selection pressure (fast growth) was achieved by applying the principle of serial transfer pioneered in the laboratories of Sol Spiegelman and Leslie Orgel. At the end of the exponential growth phase of the 3SR reaction, an aliquot of the reaction mixture is transferred into a new sample containing only buffer, nucleotides and enzymes while RNA template molecules are provided by the transfer. The conditions in the exponential growth phase allow the RNA molecules to be amplified in a constant environment; all enzymes (HIV-1 reverse transcriptase and T7 RNA polymerase) and nucleotides are present in large excess. Therefore, transferring reproducibly within the exponential growth phase is equivalent to selecting for fast growth; those molecules which can replicate faster will displace others after several transfers. The experiments were performed using a serial transfer apparatus (STA) which allows the nucleic acid concentration to be monitored on-line by measuring the laser-induced fluorescence caused by intercalation of thiazole orange monomers into the RNA/DNA amplification products. The serial transfer experiments were carried out with an RNA template (220b RNA) that represents a 220-base segment of the HIV-1 genome and comprises the in vivo primer binding site (PBS) for the HIV-1 reverse transcriptase. It could be shown that after only two serial transfers two RNA species (EP1 and EP2) emerged that were much shorter. EP1 (48b) and EP2 (54b) were formed by deletion mutations within the original 220b RNA template in the very beginning of the serial transfer experiment; due to their higher replication rate (calculated from the growth curves derived on-line) these two deletion mutants displaced the original 220b RNA template in the course of the following thirty transfers. We assume that these two RNA species evolved independently of each other. Their formation was probably induced by a strand-transfer reaction of HIV-1 reverse transcriptase. Sequence analyses of these two evolution products seem to confirm such a presented pathway. 30 years after Spiegelman's experiment, the study described here is another answer to the question he posed: 'How do molecules evolve if the only demand is the biblical injunction: multiply?'. The answer, derived from a modified 3SR amplification system (mimicking a part of the HIV-1 replication cycle in vitro), is the same as thirty years ago: The RNA molecules adapt to the new conditions by throwing away any ballast not needed for fast replication. Clearly, this is only one aspect of molecular evolution; however, it shows that we should be careful in designating unidentified genetic material as 'junk DNA'.

摘要

进化所需的条件是扩增、诱变和选择。在此,我们描述了一个体外复制系统对快速生长选择压力的进化反应,并展示了该复制系统中扩增分子会发生什么情况。我们重点关注分子进化实验的方法、监测和自动化。为了对RNA分子的进化进行体外研究,我们使用了一种改良的自维持序列复制(3SR)方法。在3SR反应的第一步,RNA模板由HIV-1逆转录酶进行逆转录,接着进行第二链合成,然后由T7 RNA聚合酶对所得的双链DNA进行转录。选择压力(快速生长)是通过应用索尔·斯皮格尔曼和莱斯利·奥格尔实验室首创的连续转移原理来实现的。在3SR反应的指数生长阶段结束时,将一份反应混合物转移到一个仅含有缓冲液、核苷酸和酶的新样品中,而RNA模板分子则通过转移提供。指数生长阶段的条件允许RNA分子在恒定环境中进行扩增;所有酶(HIV-1逆转录酶和T7 RNA聚合酶)和核苷酸都大量过量存在。因此,在指数生长阶段进行可重复转移等同于选择快速生长;那些能够更快复制的分子在几次转移后将取代其他分子。实验使用了一种连续转移装置(STA),该装置通过测量噻唑橙单体插入RNA/DNA扩增产物所引起的激光诱导荧光来在线监测核酸浓度。连续转移实验使用了一种RNA模板(220b RNA),它代表HIV-1基因组的一个220个碱基的片段,并包含HIV-1逆转录酶的体内引物结合位点(PBS)。可以证明,仅经过两次连续转移,就出现了两种短得多的RNA种类(EP1和EP2)。EP1(48b)和EP2(54b)是在连续转移实验开始时,由原始220b RNA模板内的缺失突变形成的;由于它们具有更高的复制速率(根据在线得出的生长曲线计算),这两个缺失突变体在随后的三十次转移过程中取代了原始的220b RNA模板。我们假定这两种RNA种类是彼此独立进化的。它们的形成可能是由HIV-1逆转录酶的链转移反应诱导的。对这两种进化产物的序列分析似乎证实了这样提出的途径。在斯皮格尔曼实验30年后,此处描述的研究是对他所提出问题的另一个答案:“如果唯一的要求是圣经中的诫命:繁殖,分子如何进化?”。从一个改良的3SR扩增系统(在体外模拟HIV-1复制周期的一部分)得出的答案与30年前相同:RNA分子通过抛弃快速复制不需要的任何负担来适应新条件。显然,这只是分子进化的一个方面;然而,它表明我们在将未鉴定的遗传物质指定为“垃圾DNA”时应谨慎。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验