Suppr超能文献

生理学中的反义寡核苷酸策略。

Antisense oligonucleotide strategies in physiology.

作者信息

Baertschi A J

机构信息

Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville 22908, USA.

出版信息

Mol Cell Endocrinol. 1994 May;101(1-2):R15-24. doi: 10.1016/0303-7207(94)90254-2.

Abstract

Antisense oligonucleotides can inhibit gene expression in living cells by binding to complementary sequences of DNA, RNA or mRNA. The mechanisms include inhibition of RNA synthesis, RNA splicing, mRNA export, binding of initiation factors, assembly of ribosome subunits and of sliding of the ribosome along the mRNA coding sequence. The most efficient antisense oligonucleotides also activate RNAse H, an ubiquitous enzyme that cleaves the mRNA at sites of mRNA/oligonucleotide duplex formation. A staggering number of oligonucleotide modifications have been proposed to retard degradation by nucleases, enhance cellular uptake, increase binding to the target sequence, and minimize non-specific binding to related nucleic acid sequences. Phosphorothioates are the most popular oligonucleotides used in cell culture and in vivo, although sequence non-specificity remains an underreported problem. Recently developed chimeras between methylphosphonates and phosphodiester oligonucleotides appear to combine the advantages of water solubility, nuclease resistance, enhanced cellular uptake, activation of RNAse H, and high sequence selectivity. Antigene oligonucleotides are also promising, because they can inhibit gene expression by triple helix formation with DNA or by binding to one of the DNA strands. They have so far been little used in physiological studies. Cost is still a prohibitive factor, especially for suppressing the expression of a hormone or hormone receptor gene in rats, for example. However, patch-clamp dialysis of single cells or nuclear microinjections in culture, exposure of cultures to extracellular oligonucleotides, and intra-cerebral microinjections of oligonucleotides are feasible and highly rewarding approaches in physiology.

摘要

反义寡核苷酸可通过与DNA、RNA或mRNA的互补序列结合来抑制活细胞中的基因表达。其机制包括抑制RNA合成、RNA剪接、mRNA输出、起始因子结合、核糖体亚基组装以及核糖体沿mRNA编码序列的滑动。最有效的反义寡核苷酸还能激活核糖核酸酶H,这是一种普遍存在的酶,可在mRNA/寡核苷酸双链体形成位点切割mRNA。人们提出了大量的寡核苷酸修饰方法,以延缓核酸酶的降解、增强细胞摄取、增加与靶序列的结合,并使与相关核酸序列的非特异性结合最小化。硫代磷酸酯是细胞培养和体内使用最广泛的寡核苷酸,尽管序列非特异性仍然是一个报道不足的问题。最近开发的甲基膦酸酯和磷酸二酯寡核苷酸之间的嵌合体似乎结合了水溶性、核酸酶抗性、增强细胞摄取、激活核糖核酸酶H和高序列选择性的优点。反基因寡核苷酸也很有前景,因为它们可以通过与DNA形成三链螺旋或与DNA的一条链结合来抑制基因表达。到目前为止,它们在生理学研究中的应用还很少。成本仍然是一个阻碍因素,特别是例如在大鼠中抑制激素或激素受体基因的表达时。然而,单细胞的膜片钳透析或培养中的核显微注射、将培养物暴露于细胞外寡核苷酸以及脑内寡核苷酸显微注射在生理学中是可行且极具价值的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验