Qian S M, Delaney K R
Department of Biological Sciences, Simon Fraser University, Burnaby, B.C., Canada.
Brain Res. 1997 Oct 17;771(2):259-70. doi: 10.1016/s0006-8993(97)00812-3.
Action potential-evoked transmitter release is enhanced for many seconds after moderate-frequency stimulation (e.g. 15 Hz for 30 s) at the excitor motorneuron synapse of the crayfish dactyl opener muscle. Beginning about 1.5 s after a train, activity-dependent synaptic enhancement (ADSE) is dominated by a process termed augmentation (G.D. Bittner, D.A. Baxter, Synaptic plasticity at crayfish neuromuscular junctions: facilitation and augmentation, Synapse 7 (1991) 235-243'[4]; K.L. Magleby, Short-term changes in synaptic efficacy, in: G.M. Edelman, L.E. Gall, C.W. Maxwell (Eds.), Synaptic Function, John Wiley and Sons, New York, 1987, pp. 21-56; K.L. Magleby; J.E. Zengel, Augmentation: a process that acts to increase transmitter release at the frog neuromuscular junction, J. Physiol. (Lond.) 257 (1976) 449-470) which decays approximately exponentially with a time constant of about 10 s at 16 degrees C, reflecting the removal of Ca2+ which accumulates during the train in presynaptic terminals (K.R. Delaney, D.W. Tank, R.S. Zucker, Serotonin-mediated enhancement of transmission at crayfish neuromuscular junction is independent of changes in calcium, J. Neurosci. 11 (1991) 2631-2643). Serotonin (5-HT, 1 microM) increases evoked and spontaneous transmitter release several-fold (D. Dixon, H.L. Atwood, Crayfish motor nerve terminal's response to serotonin examined by intracellular microelectrode, J. Neurobiol. 16 (1985) 409-424; J. Dudel, Modulation of quantal synaptic release by serotonin and forskolin in crayfish motor nerve terminals, in: Modulation of Synaptic Transmission and Plasticity in Nervous Systems, G. Hertting, H.-C. Spatz (Eds.), Springer-Verlag, Berlin, 1988; S. Glusman, E.A. Kravitz. The action of serotonin on excitatory nerve terminals in lobster nerve-muscle preparations, J. Physiol. (Lond.) 325 (1982) 223-241). We found that ADSE persists about 2-3 times longer after moderate-frequency presynaptic stimulation in the presence of 5-HT. This slowing of the decay of ADSE by 5-HT was not accompanied by significant changes in the initial amplitude of activity-dependent components of enhancement 1.5 s after the train. Measurements of presynaptic [Ca2+] indicated that the time course of Ca2+ removal from the presynaptic terminals after trains was not altered by 5-HT. Changes in presynaptic action potential shape, resting membrane potential or postsynaptic impedance after trains cannot account for slower recovery of ADSE. Axonal injection of EDTA slows the removal of residual Ca2+ and the decay of synaptic augmentation after trains of action potentials (K.R. Delaney, D.W. Tank, A quantitative measure of the dependence of short-term synaptic enhancement on presynaptic residual calcium, J. Neurosci. 14 (1994) 5885-5902), but has little or no effect on the 5-HT-induced persistence of ADSE. This also suggests that the time course of ADSE in the presence of 5-HT is not determined primarily by residual Ca2+ removal kinetics. The slowing of ADSE recovery after trains by 5-HT reverses with washing in 5-HT-free saline along with the 5-HT-mediated enhancement of release.
在小龙虾指节 opener 肌的兴奋性运动神经元突触处,中等频率刺激(如 15 Hz,持续 30 s)后,动作电位诱发的递质释放会增强数秒。在一串刺激开始约 1.5 s 后,活动依赖性突触增强(ADSE)主要由一个称为增强作用的过程主导(G.D. Bittner、D.A. Baxter,《小龙虾神经肌肉接头处的突触可塑性:易化和增强》,《突触》7 (1991) 235 - 243 [4];K.L. Magleby,《突触效能的短期变化》,载于 G.M. Edelman、L.E. Gall、C.W. Maxwell 编,《突触功能》,John Wiley and Sons,纽约,1987,第 21 - 56 页;K.L. Magleby、J.E. Zengel,《增强作用:一种增加青蛙神经肌肉接头处递质释放的过程》,《生理学杂志》(伦敦) 257 (1976) 449 - 470),在 16℃时,其以约 10 s 的时间常数近似指数衰减,这反映了在一串刺激期间突触前终末中积累的 Ca2+ 的清除(K.R. Delaney、D.W. Tank、R.S. Zucker,《5 - 羟色胺介导的小龙虾神经肌肉接头处传递增强与钙变化无关》,《神经科学杂志》11 (1991) 2631 - 2643)。5 - 羟色胺(5 - HT,1 μM)使诱发的和自发的递质释放增加数倍(D. Dixon、H.L. Atwood,《用细胞内微电极检测小龙虾运动神经终末对 5 - 羟色胺的反应》,《神经生物学杂志》16 (1985) 409 - 424;J. Dudel,《5 - 羟色胺和福斯高林对小龙虾运动神经终末量子突触释放的调制》,载于《神经系统中突触传递和可塑性的调制》,G. Hertting、H.-C. Spatz 编,Springer - Verlag,柏林,1988;S. Glusman、E.A. Kravitz,《5 - 羟色胺对龙虾神经 - 肌肉制剂中兴奋性神经终末的作用》,《生理学杂志》(伦敦) 325 (1982) 223 - 241)。我们发现,在 5 - HT 存在的情况下,中等频率突触前刺激后 ADSE 持续的时间延长约 2 - 3 倍。5 - HT 使 ADSE 衰减减慢,但在一串刺激后 1.5 s 时,增强作用的活动依赖性成分的初始幅度没有显著变化。突触前 [Ca2+] 的测量表明,一串刺激后从突触前终末清除 Ca2+ 的时间进程不受 5 - HT 影响。一串刺激后突触前动作电位形状、静息膜电位或突触后阻抗的变化不能解释 ADSE 恢复较慢的现象。轴突注射乙二胺四乙酸(EDTA)会减慢一串动作电位后残余 Ca2+ 的清除以及突触增强作用的衰减(K.R. Delaney、D.W. Tank,《短期突触增强对突触前残余钙依赖性的定量测量》,《神经科学杂志》14 (1994) 5885 - 5902),但对 5 - HT 诱导的 ADSE 持续性几乎没有影响。这也表明,5 - HT存在时 ADSE 的时间进程并非主要由残余 Ca2+ 的清除动力学决定。5 - HT 使一串刺激后 ADSE 恢复减慢的现象,在用无 5 - HT 的生理盐水冲洗时会随着 5 - HT 介导的释放增强而逆转。