Suppr超能文献

一种基于DICOM标准的用于图像完整性的自动PACS图像采集与恢复方案。

An automated PACS image acquisition and recovery scheme for image integrity based on the DICOM standard.

作者信息

Lou S L, Hoogstrate D R, Huang H K

机构信息

Department of Radiology, University of California, San Francisco 94143-0628, USA.

出版信息

Comput Med Imaging Graph. 1997 Jul-Aug;21(4):209-18. doi: 10.1016/s0895-6111(97)00011-6.

Abstract

The data quality and completeness of acquired images, which we refer to as integrity, is considered as the most important requirement in the image acquisition design of the Picture Archiving and Communication System (PACS). The Digital Imaging and Communications in Medicine (DICOM) standard significantly simplifies the task of acquiring radiological images from a DICOM compliant imaging system into the PACS. However, human interaction with the imaging system by changing the DICOM communication settings can result in missing images during the PACS image acquisition. A scheme based on the DICOM Query and Retrieve (Q/R) service class was developed to automatically identify and recover missing images. In addition, grouping sequential scanned images such as a CT and MR image series is another potential process that can miss images because of no indication of the end of series. Two methods are presented for determining the end of series and the pros and cons of each method are discussed in detail. Two experiments in a real clinical environment were conducted; one with and one without the Q/R implementation. The statistical results indicate two highlights from this work. First, the Q/R scheme faithfully recovered all missing images caused by human interaction with the DICOM compliant imaging system. Second, there was no single image slice missed when grouping slices into a series using the presented grouping algorithm in the two experimental periods.

摘要

我们将采集图像的数据质量和完整性(即完整性)视为图像存档与通信系统(PACS)图像采集设计中最重要的要求。医学数字成像和通信(DICOM)标准显著简化了从符合DICOM标准的成像系统采集放射图像并将其输入PACS的任务。然而,通过更改DICOM通信设置与成像系统进行人工交互可能会导致在PACS图像采集过程中出现图像丢失的情况。我们开发了一种基于DICOM查询与检索(Q/R)服务类的方案,用于自动识别和恢复丢失的图像。此外,对连续扫描的图像(如CT和MR图像序列)进行分组是另一个可能因未指示序列结束而导致图像丢失的潜在过程。本文提出了两种确定序列结束的方法,并详细讨论了每种方法的优缺点。我们在实际临床环境中进行了两项实验,一项实施了Q/R方案,另一项未实施。统计结果显示了这项工作的两个亮点。第一,Q/R方案成功地恢复了因与符合DICOM标准的成像系统进行人工交互而导致的所有丢失图像。第二,在两个实验阶段中,使用所提出的分组算法将切片分组为序列时,没有遗漏任何一个图像切片。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验