Suppr超能文献

氨基酸脱氢酶超家族中底物特异性的决定因素。

Determinants of substrate specificity in the superfamily of amino acid dehydrogenases.

作者信息

Baker P J, Waugh M L, Wang X G, Stillman T J, Turnbull A P, Engel P C, Rice D W

机构信息

The Krebs Institute, Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K.

出版信息

Biochemistry. 1997 Dec 23;36(51):16109-15. doi: 10.1021/bi972024x.

Abstract

The subunit of the enzyme glutamate dehydrogenase comprises two domains separated by a cleft harboring the active site. One domain is responsible for dinucleotide binding and the other carries the majority of residues which bind the substrate. During the catalytic cycle a large movement between the two domains occurs, closing the cleft and bringing the C4 of the nicotinamide ring and the Calpha of the substrate into the correct positioning for hydride transfer. In the active site, two residues, K89 and S380, make interactions with the gamma-carboxyl group of the glutamate substrate. In leucine dehydrogenase, an enzyme belonging to the same superfamily, the equivalent residues are L40 and V294, which create a more hydrophobic specificity pocket and provide an explanation for their differential substrate specificity. In an attempt to change the substrate specificity of glutamate dehydrogenase toward that of leucine dehydrogenase, a double mutant, K89L,S380V, of glutamate dehydrogenase has been constructed. Far from having a high specificity for leucine, this mutant appears to be devoid of any catalytic activity over a wide range of substrates tested. Determination of the three-dimensional structure of the mutant enzyme has shown that the loss of function is related to a disordering of residues linking the enzyme's two domains, probably arising from a steric clash between the valine side chain, introduced at position 380 in the mutant, and a conserved threonine residue, T193. In leucine dehydrogenase the steric clash between the equivalent valine and threonine side chains (V294, T134) does not occur owing to shifts of the main chain to which these side chains are attached. Thus, the differential substrate specificity seen in the amino acid dehydrogenase superfamily arises from both the introduction of simple point mutations and the fine tuning of the active site pocket defined by small but significant main chain rearrangements.

摘要

谷氨酸脱氢酶的亚基由两个结构域组成,中间有一个容纳活性位点的裂隙将其隔开。一个结构域负责二核苷酸结合,另一个结构域包含与底物结合的大部分残基。在催化循环过程中,两个结构域之间会发生大幅度移动,裂隙关闭,使烟酰胺环的C4和底物的α碳原子处于正确位置以便进行氢化物转移。在活性位点,两个残基K89和S380与谷氨酸底物的γ-羧基相互作用。在亮氨酸脱氢酶(属于同一超家族的一种酶)中,对应的残基是L40和V294,它们形成了一个更具疏水性的特异性口袋,并解释了它们不同的底物特异性。为了将谷氨酸脱氢酶的底物特异性改变为亮氨酸脱氢酶的底物特异性,构建了谷氨酸脱氢酶的双突变体K89L、S380V。然而,该突变体对亮氨酸并没有高特异性,在广泛测试的底物范围内似乎没有任何催化活性。突变酶三维结构的测定表明,功能丧失与连接酶两个结构域的残基紊乱有关,这可能是由于突变体中380位引入的缬氨酸侧链与保守的苏氨酸残基T193之间的空间冲突所致。在亮氨酸脱氢酶中,由于连接这些侧链的主链发生位移,等效的缬氨酸和苏氨酸侧链(V294、T134)之间不会发生空间冲突。因此,氨基酸脱氢酶超家族中观察到的不同底物特异性既源于简单点突变的引入,也源于由小而显著的主链重排所定义的活性位点口袋的微调。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验