Suppr超能文献

Kappa opiate agonist RU 51599 inhibits vasopressin gene expression and osmotically-induced vasopressin secretion in vitro.

作者信息

Rossi N F, Kim J K, Summers S N, Schrier R W

机构信息

Department of Medicine, Wayne State University and VA Medical Center, Detroit, MI 48201, USA.

出版信息

Life Sci. 1997;61(23):2271-82. doi: 10.1016/s0024-3205(97)00931-4.

Abstract

Kappa (kappa) opioid agonists induce a water diuresis and inhibit vasopressin (AVP) secretion. Hypothalamic and neurohypophysial sites have both been implicated in the response. The present study was designed to ascertain if kappa-agonist inhibition of osmotically-stimulated AVP secretion is associated with parallel changes in AVP gene expression. Experiments were performed using the selective kappa-agonist RU 51599 (RU) in compartmentalized hypothalamo-neurohypophysial explants. When added to either the hypothalamus or the neural lobe, RU dose dependently inhibited osmotically-induced AVP secretion that was reversed by the highly selective kappa-antagonist nor-binaltorphimine (nor-BNI) only at the hypothalamic, not the neurohypophysial level. AVP mRNA content paralleled the changes in AVP secretory rate induced by hypothalamic kappa-agonism. AVP mRNA levels were unaltered when RU was applied to the neural lobe. Neurohypophysial AVP content did not change. These data indicate that hypothalamic kappa-agonism inhibits osmotically induced AVP secretion and that a non-kappa1 opiate receptor mediates posterior pituitary opioid inhibition of AVP release. Neural or receptor inputs to the hypothalamus or magnocellular cell body may downwardly modulate AVP mRNA content by altering AVP gene transcription and/or message stability. Inhibition of AVP release directly at the neurohypophysis can be uncoupled from the cellular mechanisms that generate changes in AVP mRNA content.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验