Suppr超能文献

模拟人体跟腱的拉伸行为。

Modeling the tensile behavior of human Achilles tendon.

作者信息

Lewis G, Shaw K M

机构信息

Department of Mechanical Engineering, University of Memphis, TN 38152-6576, USA.

出版信息

Biomed Mater Eng. 1997;7(4):231-44.

PMID:9408575
Abstract

Uniaxial quasi-static tensile stress, sigma versus strain, epsilon, data were obtained from 29 cadaveric Achilles tendons (donor ages: 36 to 100 years), at a strain rate of either 10 or 100%/s. These results were then used in modeling the elastic component of the tensile deformational behavior of this tissue. Two approaches were taken. In the first, it was shown that the following constitutive relation provided an excellent fit to the elastic section of the sigma-epsilon curve, sigma = C epsilon exp[D epsilon + F epsilon 2], with C, D and F being material constants, whose values for the present dataset were found to be C = 2.00 +/- 0.99, D = 0.089 +/- 0.087 and F = -0.0047 +/- 0.0095. The values of these coefficients were not statistically significantly affected by either donor age or test strain rate. In the second approach, the value of the modulus of elasticity of a filamentary polymer matrix composite material was computed as a function of various combinations of values of the modulus of elasticity of the fiber, the modulus of elasticity of the matrix, and angle of orientation of the principal material axes with respect to the reference coordinate axes (theta) for a fiber volume fraction of 0.6 and a material Poisson's ratio of 0.4. By comparing these results with the experimentally-obtained values of the tangent modulus of elasticity of the tendons (defined as the slope of the linear section of the post-toe zone in the sigma-epsilon plot), and assuming that the tendon may be idealized as a filamentary polymer matrix composite material, the suggestion is made that the winding angle of the fibers (collagen fibrils) in the tendon (taken to be equal to theta) is about 6 degrees.

摘要

在应变速率为10%/秒或100%/秒的条件下,从29条尸体跟腱(供体年龄:36至100岁)获取了单轴准静态拉伸应力(σ)与应变(ε)的数据。然后将这些结果用于模拟该组织拉伸变形行为的弹性成分。采用了两种方法。第一种方法表明,以下本构关系与σ-ε曲线的弹性部分拟合良好:σ = Cεexp[Dε + Fε²],其中C、D和F为材料常数,对于当前数据集,其值分别为C = 2.00 ± 0.99、D = 0.089 ± 0.087和F = -0.0047 ± 0.0095。这些系数的值在统计学上不受供体年龄或测试应变速率的显著影响。在第二种方法中,对于纤维体积分数为0.6且材料泊松比为0.4的情况,计算了丝状聚合物基复合材料的弹性模量值,该值是纤维弹性模量、基体弹性模量以及主材料轴相对于参考坐标轴的取向角(θ)的各种组合的函数。通过将这些结果与实验获得的跟腱切线弹性模量值(定义为σ-ε图中趾后区线性部分的斜率)进行比较,并假设跟腱可理想化为丝状聚合物基复合材料,得出跟腱中纤维(胶原纤维)的缠绕角(设为等于θ)约为6度的建议。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验