Mallozzi C, Di Stasi A M, Minetti M
Laboratorio di Biologia Cellulare, Istituto Superiore di Sanità, Rome, Italy.
FASEB J. 1997 Dec;11(14):1281-90. doi: 10.1096/fasebj.11.14.9409547.
Peroxynitrite, the product of the reaction between nitric oxide and superoxide anion, is able to nitrate protein tyrosines. If this modification occurs on phosphotyrosine kinase substrates, it can down-regulate cell signaling. We investigated the effects of peroxynitrite on band 3-mediated signal transduction of human erythrocytes. Peroxynitrite treatment induced two different responses. At low concentrations (10-100 microM) it stimulated a metabolic response, leading to 1) a reversible inhibition of phosphotyrosine phosphatase activity, 2) a rise of tyrosine phosphorylation in the 22K cytoplasmic domain of band 3, 3) the release of glyceraldehyde 3-phosphate dehydrogenase from the membrane, and 4) the enhancement of lactate production. At high concentrations (200-1000 microM), peroxynitrite induced 1) cross-linking of membrane proteins, 2) inhibition of band 3 tyrosine phosphorylation, 3) nitration of tyrosines in the 22K cytoplasmic domain of band 3, 4) binding of hemoglobin to the membrane, 5) irreversible inhibition of phosphotyrosine kinase activity, 6) massive methemoglobin production, and 7) irreversible inhibition of lactate production. Our results demonstrate that at concentrations that could conceivably be achieved in vivo (10-100 microM), peroxynitrite behaves like other oxidants, i.e., it stimulates band 3 tyrosine phosphorylation and increases glucose metabolism. Thus, one plausible physiologic effect of peroxynitrite is the up-regulation of signaling through the reversible inhibition of phosphotyrosine phosphatase activity. At high concentrations of peroxynitrite, the tyrosine phosphorylation ceases in parallel with the nitration of band 3 tyrosines, but at these concentrations phosphotyrosine kinase activity and glycolysis are also irreversibly inhibited. Thus, at least in red blood cells, the postulated down-regulation of signaling by peroxynitrite cannot merely be ascribed to the nitration of tyrosine kinase targets.
过氧亚硝酸盐是一氧化氮与超氧阴离子反应的产物,能够使蛋白质酪氨酸发生硝化反应。如果这种修饰发生在磷酸酪氨酸激酶底物上,它可以下调细胞信号传导。我们研究了过氧亚硝酸盐对人红细胞带3介导的信号转导的影响。过氧亚硝酸盐处理诱导了两种不同的反应。在低浓度(10 - 100微摩尔)时,它刺激了一种代谢反应,导致:1)磷酸酪氨酸磷酸酶活性的可逆抑制;2)带3的22K细胞质结构域中酪氨酸磷酸化增加;3)甘油醛-3-磷酸脱氢酶从膜上释放;4)乳酸生成增加。在高浓度(200 - 1000微摩尔)时,过氧亚硝酸盐诱导:1)膜蛋白交联;2)带3酪氨酸磷酸化受抑制;3)带3的22K细胞质结构域中酪氨酸硝化;4)血红蛋白与膜结合;5)磷酸酪氨酸激酶活性的不可逆抑制;6)大量高铁血红蛋白生成;7)乳酸生成的不可逆抑制。我们的结果表明,在体内可能达到的浓度(10 - 100微摩尔)下,过氧亚硝酸盐的行为类似于其他氧化剂,即它刺激带3酪氨酸磷酸化并增加葡萄糖代谢。因此,过氧亚硝酸盐一种合理的生理作用是通过可逆抑制磷酸酪氨酸磷酸酶活性来上调信号传导。在高浓度的过氧亚硝酸盐下,酪氨酸磷酸化与带3酪氨酸的硝化同时停止,但在这些浓度下,磷酸酪氨酸激酶活性和糖酵解也被不可逆地抑制。因此,至少在红细胞中,过氧亚硝酸盐假定的信号传导下调不能仅仅归因于酪氨酸激酶靶点的硝化。