Suppr超能文献

数字化乳腺X线片中簇状微钙化的计算机辅助检测

Computer-aided detection of clustered microcalcifications in digitized mammograms.

作者信息

Zheng B, Chang Y H, Staiger M, Good W, Gur D

机构信息

Department of Radiology, University of Pittsburgh, PA 15261-0001, USA.

出版信息

Acad Radiol. 1995 Aug;2(8):655-62. doi: 10.1016/s1076-6332(05)80431-3.

Abstract

RATIONALE AND OBJECTIVES

We investigated a computer-aided detection (CAD) scheme for clustered microcalcifications in digitized mammograms.

METHODS

A multistage CAD scheme was developed and tested. To increase sensitivity, the scheme uses a Gaussian band-pass filter and nonlinear threshold. A multistage local minimum searching routine and a multilayer topographic feature analysis are used to reduce the false-positive detection rate. One hundred ten digitized mammograms were used in this preliminary test, with 55 images containing one or two verified microcalcification clusters.

RESULTS

The CAD scheme achieved 100% sensitivity and had an average false-positive detection rate of 0.18 per image.

CONCLUSION

The CAD scheme performs as well as many published schemes and has some unique advantages to further improve detection sensitivity and specificity of future CAD schemes.

摘要

原理与目的

我们研究了一种用于数字化乳腺X线摄影中簇状微钙化的计算机辅助检测(CAD)方案。

方法

开发并测试了一种多阶段CAD方案。为提高灵敏度,该方案使用了高斯带通滤波器和非线性阈值。采用多阶段局部最小值搜索程序和多层地形特征分析来降低假阳性检测率。在这项初步测试中使用了110幅数字化乳腺X线摄影图像,其中55幅图像包含一个或两个经证实的微钙化簇。

结果

该CAD方案实现了100%的灵敏度,平均每幅图像的假阳性检测率为0.18。

结论

该CAD方案的性能与许多已发表的方案相当,并且具有一些独特优势,可进一步提高未来CAD方案的检测灵敏度和特异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验