Anastasio M A, Yoshida H, Nagel R, Nishikawa R M, Doi K
Kurt Rossmann Laboratories for Radiologic Image Research, Department of Radiology, University of Chicago, Illinois 60637, USA.
Med Phys. 1998 Sep;25(9):1613-20. doi: 10.1118/1.598341.
Computer-aided diagnosis (CAD) schemes have the potential of substantially increasing diagnostic accuracy in mammography by providing the advantages of having a second reader. Our laboratory has developed a CAD scheme for detecting clustered microcalcifications in digital mammograms that is being tested clinically at the University of Chicago Hospitals. Our CAD scheme contains a large number of parameters such as filter weights, threshold levels, and region of interest (ROI) sizes. The choice of these parameter values determines the overall performance of the system and thus must be carefully set. Unfortunately, when the number of parameters becomes large, it is very difficult to obtain the optimal performance, especially when the values of the parameters are correlated with each other. In this study, we address the problem of identifying the optimal overall performance by developing an automated method for the determination of the parameter values that maximize the performance of a mammographic CAD scheme. Our method utilizes a genetic algorithm to search through the possible parameter values, and provides the set of parameters that minimize a cost function which measures the performance of the scheme. Using a database of 89 digitized mammograms, our method demonstrated that the sensitivity of our CAD scheme can be increased from 80% to 87% at a false positive rate of 1.0 per image. We estimate the average performance of our CAD scheme on unknown cases by performing jackknife tests; this was previously not feasible when the parameters of the CAD scheme were determined in a nonautomated manner.
计算机辅助诊断(CAD)方案具有通过提供第二位阅片者的优势来大幅提高乳腺X线摄影诊断准确性的潜力。我们实验室已经开发出一种用于检测数字化乳腺X线片中簇状微钙化的CAD方案,该方案正在芝加哥大学医院进行临床测试。我们的CAD方案包含大量参数,如滤波器权重、阈值水平和感兴趣区域(ROI)大小。这些参数值的选择决定了系统的整体性能,因此必须仔细设置。不幸的是,当参数数量变得很大时,很难获得最佳性能,尤其是当参数值相互关联时。在本研究中,我们通过开发一种自动方法来确定使乳腺X线CAD方案性能最大化的参数值,从而解决识别最佳整体性能的问题。我们的方法利用遗传算法在可能的参数值中进行搜索,并提供使衡量方案性能的代价函数最小化的参数集。使用一个包含89张数字化乳腺X线片的数据库,我们的方法表明,在每张图像假阳性率为1.0的情况下,我们CAD方案的灵敏度可以从80%提高到87%。我们通过进行留一法测试来估计我们CAD方案在未知病例上的平均性能;当CAD方案的参数以非自动化方式确定时,这在以前是不可行的。