Suppr超能文献

在2位被取代的γ-氨基丁酸(GABA)和反式-4-氨基巴豆酸(TACA)类似物作为GABAC受体拮抗剂。

Analogues of gamma-aminobutyric acid (GABA) and trans-4-aminocrotonic acid (TACA) substituted in the 2 position as GABAC receptor antagonists.

作者信息

Chebib M, Vandenberg R J, Johnston G A

机构信息

Adrien Albert Laboratory of Medicinal Chemistry, Department of Pharmacology, University of Sydney, NSW, Australia.

出版信息

Br J Pharmacol. 1997 Dec;122(8):1551-60. doi: 10.1038/sj.bjp.0701533.

Abstract
  1. gamma-Aminobutyric acid (GABA) and trans-4-aminocrotonic acid (TACA) have been shown to activate GABAC receptors. In this study, a range of C2, C3, C4 and N-substituted GABA and TACA analogues were examined for activity at GABAC receptors. 2. The effects of these compounds were examined by use of electrophysiological recording from Xenopus oocytes expressing the human rho 1 subunit of GABAC receptors with the two-electrode voltage-clamp method. 3. trans-4-Amino-2-fluorobut-2-enoic acid was found to be a potent agonist (KD = 2.43 microM). In contrast, trans-4-amino-2-methylbut-2-enoic acid was found to be a moderately potent antagonist (IC50 = 31.0 microM and KB = 45.5 microM). These observations highlight the possibility that subtle structural substitutions may change an agonist into an antagonist. 4. 4-Amino-2-methylbutanoic acid (KD = 189 microM), 4-amino-2-methylenebutanoic acid (KD = 182 microM) and 4-amino-2-chlorobutanoic acid (KD = 285 microM) were weak partial agonists. The intrinsic activities of these compounds were 12.1%, 4.4% and 5.2% of the maximal response of GABA, respectively. These compounds more effectively blocked the effects of the agonist, GABA, giving rise to KB values of 53 microM and 101 microM, respectively. 5. The sulphinic acid analogue of GABA, homohypotaurine, was found to be a potent partial agonist (KD = 4.59 microM, intrinsic activity 69%). 6. It was concluded that substitution of a methyl or a halo group in the C2 position of GABA or TACA is tolerated at GABAC receptors. However, there was dramatic loss of activity when these groups were substituted at the C3, C4 and nitrogen positions of GABA and TACA. 7. Molecular modelling studies on a range of active and inactive compounds indicated that the agonist/competitive antagonist binding site of the GABAC receptor may be smaller than that of the GABAA and GABAB receptors. It is suggested that only compounds that can attain relatively flat conformations may bind to the GABAC receptor agonist/competitive antagonist binding site.
摘要
  1. γ-氨基丁酸(GABA)和反式-4-氨基巴豆酸(TACA)已被证明可激活GABAC受体。在本研究中,检测了一系列C2、C3、C4和N-取代的GABA和TACA类似物对GABAC受体的活性。2. 采用双电极电压钳法,通过对表达人GABAC受体rho 1亚基的非洲爪蟾卵母细胞进行电生理记录,检测了这些化合物的作用。3. 发现反式-4-氨基-2-氟丁-2-烯酸是一种强效激动剂(KD = 2.43 microM)。相比之下,反式-4-氨基-2-甲基丁-2-烯酸是一种中等强度的拮抗剂(IC50 = 31.0 microM,KB = 45.5 microM)。这些观察结果突出了这样一种可能性,即细微的结构取代可能会将激动剂转变为拮抗剂。4. 4-氨基-2-甲基丁酸(KD = 189 microM)、4-氨基-2-亚甲基丁酸(KD = 182 microM)和4-氨基-2-氯丁酸(KD = 285 microM)是弱部分激动剂。这些化合物的内在活性分别为GABA最大反应的12.1%、4.4%和5.2%。这些化合物更有效地阻断了激动剂GABA的作用,其KB值分别为53 microM和101 microM。5. GABA的亚磺酸类似物高同型牛磺酸被发现是一种强效部分激动剂(KD = 4.59 microM,内在活性69%)。6. 得出的结论是,在GABAC受体上,GABA或TACA的C2位被甲基或卤代基团取代是可以耐受的。然而,当这些基团取代GABA和TACA的C3、C4和氮位时,活性会显著丧失。7. 对一系列活性和非活性化合物的分子模拟研究表明,GABAC受体的激动剂/竞争性拮抗剂结合位点可能比GABAA和GABAB受体的小。有人提出,只有能够形成相对扁平构象的化合物才能与GABAC受体激动剂/竞争性拮抗剂结合位点结合。

相似文献

5
Mixed antagonistic effects of bilobalide at rho1 GABAC receptor.白果内酯对rho1 GABAC受体的混合拮抗作用。
Neuroscience. 2006;137(2):607-17. doi: 10.1016/j.neuroscience.2005.08.071. Epub 2005 Nov 21.

引用本文的文献

5
Guanidino acids act as rho1 GABA(C) receptor antagonists.胍基酸作为 rho1 GABA(C) 受体拮抗剂。
Neurochem Res. 2009 Oct;34(10):1704-11. doi: 10.1007/s11064-009-9968-x. Epub 2009 Apr 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验