Xie F, Paik M C
Department of Clinical Statistics and Data Management, Wyeth-Lederle Vaccines and Pediatrics, Pearl River, New York 10965, USA.
Biometrics. 1997 Dec;53(4):1458-66.
This paper presents an approach to handling missing covariates in the generalized estimating equation (GEE) model for binary outcomes when the probability of missingness depends on the observed outcomes and covariates. The proposed method is to replace the missing quantities in the estimating function with consistent estimates. In special cases, the proposed model reduces to a weighted GEE model for the completely observed units, where the weight is the inverse of the probability of missingness. Our method can be viewed as an extension of the mean score method by Reilly and Pepe (1995, Biometrika 82, 299-314) to the GEE context. Under certain regularity conditions, the estimates of the regression coefficients obtained by the proposed method are consistent and asymptotically normally distributed. The finite sample properties of the estimates are illustrated via computer simulations. An application to the study of dementia among stroke patients is presented.
本文提出了一种在广义估计方程(GEE)模型中处理二元结局缺失协变量的方法,此时缺失概率取决于观测到的结局和协变量。所提出的方法是用一致估计量替换估计函数中的缺失量。在特殊情况下,所提出的模型简化为完全观测单元的加权GEE模型,其中权重是缺失概率的倒数。我们的方法可视为Reilly和Pepe(1995年,《生物统计学》82卷,299 - 314页)的平均得分法在GEE背景下的扩展。在某些正则条件下,所提方法得到的回归系数估计是一致的且渐近正态分布。通过计算机模拟说明了估计量的有限样本性质。还给出了该方法在中风患者痴呆症研究中的一个应用。