Danielsen E, Kroes S J, Canters G W, Bauer R, Hemmingsen L, Singh K, Messerschmidt A
Physics laboratory, Royal Veterinary and Agricultural University, Frederiksberg, Denmark.
Eur J Biochem. 1997 Dec 1;250(2):249-59. doi: 10.1111/j.1432-1033.1997.0249a.x.
The structural details of the metal site in the [His121]azurin mutant from Alcaligenes denitrificans where the axial methionine has been replaced by a histidine have been studied after substitution with the divalent cadmium ion and the monovalent silver ion. The studies have been carried out in solution using the technique of perturbed angular correlations of gamma-rays (PAC) of the two isotopes, 111Ag and 111mCd. In the pH range 6-9, the PAC spectra for cadmium-substituted [His121]azurin reveals a pH-independent equilibrium between two different metal-coordination geometries. Interpretation of the PAC data shows agreement between the dominating coordination geometry and that derived from X-ray diffraction on the Cu(II)[His121] azurin at high pH (Messerschmidt, A., unpublished results). Thus, it appears likely that cadmium for this geometry is four coordinated to the ligands His46, His117, Cys112, and His121. The other geometry is best interpreted as a substitution of His121 by a solvent water ligand. These interpretations stem from predictions of the experimentally determined nuclear quadrupole interactions (NQI) via the simple angular overlap model (AOM). At low pH (3.8), the concentration of the former species is reduced to 50% of its high pH value suggesting a pK of about 4 for His121. Two different coordination geometries have also been observed for the Cu(II) protein and assigned a type 1.5 and a type 1 copper site [Kroes, S. J., Hoitink, C. W. G., Andrew, C. R., Ai, J., Sanders-Loehr, J., Messerschmidt, A., Hagen, W. R. & Canters, G. W. (1996a) Eur. J. Biochem. 240, 342-351]. For silver-substituted [His121]azurin, several notable changes occur relative to the cadmium-substituted protein. At least four different metal-coordination geometries exist for silver[His121]azurin in the pH range 4-8. Changes in the population of these coordination sites occurs between pH 4 and pH 5, and pH 5 and pH 6. Furthermore, in contrast to the cadmium-substituted protein, only a single coordination geometry is present above pH 6. The change in population occurring between pH 5 and pH 6 suggests ionization of a non-coordinating histidine, here proposed as His121. The change in population at low pH could then be due to protonation of an additional coordinating histidine such as His46 or His117. The single coordination geometry existing at pH values above 6 for the silver protein cannot within our model calculations be described with His121 coordinated. However, it can be described with a coordinated water molecule but in a different angular position than for His121 in the copper protein (Messerschmidt, A., unpublished results). The reduced tendency for silver to coordinate His121 is in agreement with the general trend of lower pK values for ligands coordinating to monovalent ions relative to divalent ions. In conclusion, this work demonstrates that mutation of Met121 to other amino acid residues opens the possibility of other coordination geometries than the rigid three-coordinated structure observed for wild-type azurin, especially the possibility of increasing the coordination number by either solvent water ligands or the substituting amino acid. Furthermore, it opens up the possibility for different coordination geometries for monovalent and divalent metal ions as observed here and previously for the [Leu121]azurin mutant [Bauer, R., Danielsen, E., Hemmingsen, L., Bjerrum, M. J., Hansson, O. & Singh, K. (1997) J. Am. Chem. Soc. 119, 157-163].
在将来自反硝化产碱菌的[His121]天青蛋白突变体中的轴向甲硫氨酸替换为组氨酸后,用二价镉离子和一价银离子进行取代,研究了该金属位点的结构细节。这些研究是在溶液中使用111Ag和111mCd这两种同位素的γ射线扰动角关联(PAC)技术进行的。在pH值6 - 9范围内,镉取代的[His121]天青蛋白的PAC光谱显示出两种不同金属配位几何结构之间与pH无关的平衡。对PAC数据的解释表明,主要的配位几何结构与高pH值下Cu(II)[His121]天青蛋白的X射线衍射结果一致(梅塞尔施密特,A.,未发表结果)。因此,对于这种几何结构,镉可能与配体His46、His117、Cys112和His121形成四配位。另一种几何结构最好解释为His121被溶剂水分子配体取代。这些解释源于通过简单角重叠模型(AOM)对实验测定的核四极相互作用(NQI)的预测。在低pH值(3.8)时,前一种物种的浓度降至其高pH值的50%,表明His121的pK约为4。对于Cu(II)蛋白也观察到了两种不同的配位几何结构,并分别指定为1.5型和1型铜位点[克罗斯,S. J.,霍廷克,C. W. G.,安德鲁,C. R.,艾,J.,桑德斯 - 洛尔,J.,梅塞尔施密特,A.,哈根,W. R. & 坎特斯,G. W.(1996a)《欧洲生物化学杂志》240, 342 - 351]。对于银取代的[His121]天青蛋白,相对于镉取代的蛋白发生了几个显著变化。在pH值4 - 8范围内,银[His121]天青蛋白至少存在四种不同的金属配位几何结构。这些配位位点的数量在pH值4和pH值5之间以及pH值5和pH值6之间发生变化。此外,与镉取代的蛋白不同,在pH值高于6时仅存在一种配位几何结构。在pH值5和pH值6之间发生的数量变化表明一个非配位组氨酸发生了电离(这里认为是His121)。低pH值下数量的变化可能是由于另一个配位组氨酸(如His46或His117)的质子化。在我们的模型计算中,无法描述银蛋白在pH值高于6时存在的单一配位几何结构中His121是配位的情况。然而,可以用一个配位水分子来描述,但角度位置与铜蛋白中His121的不同(梅塞尔施密特,A.,未发表结果)。银与His121配位的倾向降低与配体与一价离子配位的pK值相对于二价离子更低的总体趋势一致。总之,这项工作表明将Met121突变为其他氨基酸残基开启了出现不同于野生型天青蛋白所观察到的刚性三配位结构的其他配位几何结构的可能性,特别是通过溶剂水分子配体或取代氨基酸增加配位数的可能性。此外,正如这里以及之前对[Leu121]天青蛋白突变体所观察到的那样,它也开启了一价和二价金属离子具有不同配位几何结构的可能性[鲍尔,R.,丹尼尔森,E.,亨明森,L.,比耶鲁姆,M. J.,汉森,O. & 辛格,K.(1997)《美国化学会志》119, 157 - 163]。