Selim T E, Ghoneim H R, Uknis A B, Colman R W, DeLa Cadena R A
Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA.
Eur J Biochem. 1997 Dec 1;250(2):532-8. doi: 10.1111/j.1432-1033.1997.0532a.x.
We have previously demonstrated a low-affinity (0.8 microM, non-covalent complex formation between high-molecular-mass kininogen (HK) and plasminogen (Plg) which prevented Plg interaction with glioma and endothelial cells. We have now extended our previous observations by exploring the potential complex formation between Plg and low-molecular-mass kininogen (LK) and between LK and HK with Plg cleaved with human neutrophil elastase (HNE). Plg cleavage by HNE (PlgHNE) yielded kringles 1-3, kringle 4 and mini-plasminogen. PlgHNE was subjected to SDS/PAGE under non-reducing conditions, followed by western blotting, and incubated with either 125I-HK or 125I-LK. Autoradiograms revealed that 125I-HK bound to miniplasminogen and to kringles 1-3 but not to kringle 4 and the presence of 10 mM 6-aminohexanoic acid (Ahx) disrupted only the interaction with kringles 1-3. In contrast, 125I-LK bound to miniplasminogen but not to kringles 1-3 or 4 and Ahx had no effect at all. The complex formation of either HK (0.67 microM) or LK (3 microM) with Plg (1.5 microM) did not affect its conversion to plasmin by tissue plasminogen activator (t-PA) (10 U/ml) in the presence of a tissue plasminogen stimulator (0.14 microM). However, the rate of conversion of plasminogen to plasmin by t-PA was affected when platelets were added to the reaction mixture. Since HK (0.83 microM) has been shown to inhibit plasmin-induced platelet aggregation, we investigated whether this inhibitory property is found within the heavy chain shared by HK and LK. We found that LK inhibited plasmin-induced platelet aggregation, but a 4-fold molar excess was required when compared to HK. Compared to plasmin, 3-5-fold molar excess of miniplasmin is required to induce platelet aggregation, indicating the important role of kringles 1-3 for plasmin interactions with these cells. These results indicate that HK and LK-mediated inhibition of plasmin-induced platelet aggregation is likely due to complex formation with kringle 5 without interfering with plasmin's active site. We found an additional interaction between HK and kringles 1-3 enhancing the inhibitory effect, presumably by interfering with plasmin's interaction with platelets. This HK and LK-associated modulation of plasmin-induced platelet aggregation may serve as a template to develop synthetic peptides as novel therapeutic agents to prevent some of the plasmin-associated thrombocytopenia seen during thrombolytic therapy.
我们之前已经证明,高分子量激肽原(HK)与纤溶酶原(Plg)之间存在低亲和力(0.8微摩尔)的非共价复合物形成,这阻止了Plg与胶质瘤细胞和内皮细胞的相互作用。现在,我们通过探索Plg与低分子量激肽原(LK)之间以及LK与经人中性粒细胞弹性蛋白酶(HNE)裂解的Plg之间潜在的复合物形成,扩展了我们之前的观察结果。HNE对Plg的裂解(PlgHNE)产生了1 - 3环、4环和微型纤溶酶原。将PlgHNE在非还原条件下进行SDS/PAGE,然后进行蛋白质印迹分析,并与125I - HK或125I - LK孵育。放射自显影片显示,125I - HK与微型纤溶酶原和1 - 3环结合,但不与4环结合,并且10毫摩尔6 - 氨基己酸(Ahx)的存在仅破坏了与1 - 3环的相互作用。相比之下,125I - LK与微型纤溶酶原结合,但不与1 - 3环或4环结合,并且Ahx对其完全没有影响。在存在组织纤溶酶原刺激剂(0.14微摩尔)的情况下,HK(0.67微摩尔)或LK(3微摩尔)与Plg(1.5微摩尔)的复合物形成并不影响其被组织纤溶酶原激活剂(t - PA,10单位/毫升)转化为纤溶酶。然而,当向反应混合物中加入血小板时,t - PA将纤溶酶原转化为纤溶酶的速率受到影响。由于已证明HK(0.83微摩尔)可抑制纤溶酶诱导的血小板聚集,我们研究了这种抑制特性是否存在于HK和LK共有的重链中。我们发现LK可抑制纤溶酶诱导的血小板聚集,但与HK相比需要4倍的摩尔过量。与纤溶酶相比,需要3 - 5倍摩尔过量的微型纤溶酶才能诱导血小板聚集,这表明1 - 3环在纤溶酶与这些细胞相互作用中起重要作用。这些结果表明,HK和LK介导的对纤溶酶诱导的血小板聚集的抑制可能是由于与5环形成复合物而不干扰纤溶酶的活性位点。我们发现HK与1 - 3环之间存在额外的相互作用,增强了抑制作用,推测是通过干扰纤溶酶与血小板的相互作用。HK和LK对纤溶酶诱导的血小板聚集的这种调节作用可作为开发合成肽作为新型治疗剂的模板,以预防溶栓治疗期间出现的一些与纤溶酶相关的血小板减少症。