Herrero M E, Arand M, Hengstler J G, Oesch F
Institute of Toxicology, University of Mainz, Germany.
Environ Mol Mutagen. 1997;30(4):429-39. doi: 10.1002/(sici)1098-2280(1997)30:4<429::aid-em8>3.0.co;2-d.
Styrene 7,8-oxide and ethylene oxide are widely used genotoxic bulk chemicals, which have been associated with potential carcinogenic hazard for occupationally exposed workers. Both epoxides alkylate DNA preferentially at the N-7 position of guanine and consequently produce single-strand breaks and alkali labile sites in the DNA of exposed cells. In order to study the role of human microsomal epoxide hydrolase (hmEH) in protecting cells against genotoxicity of styrene 7,8-oxide and ethylene oxide, we expressed the cDNA of hmEH in V79 Chinese hamster cells. We obtained a number of cell clones that expressed functionally active epoxide hydrolase. Among these, the clone 92hmEH-V79 revealed an especially high enzymatic mEH activity toward styrene 7,8-oxide (10 nmol converted per mg of protein per min, measured in the 9,000 x g supernatant of the cell homogenate), that was 100 times higher than that determined in mock-transfected cells and within the range of mEH activity in human liver. Styrene 7,8-oxide-induced DNA single-strand breaks/alkali labile sites (dose range 10 microM to 1 mM styrene 7,8-oxide) measured by the alkaline elution technique were significantly lower in the 92hmEH-V79 cells as compared to the mock-transfected cells. The protection against styrene 7,8-oxide genotoxicity in 92hmEH-V79 cells could be abolished by addition of valpromide, a selective inhibitor of microsomal epoxide hydrolase. These results clearly show that the metabolism of styrene 7,8-oxide by hmEH in 92hmEH-V79 cells was responsible for the protection against styrene 7,8-oxide genotoxicity. On the other hand, no protective effect of epoxide hydrolase expression could be observed on ethylene oxide-induced DNA damage with the recombinant cell line over a dose range of 0.5-2.5 mM ethylene oxide. This selectivity of the protective effect on epoxide genotoxicity thus appears to be an important factor that must be taken into account for the prediction of the genotoxic risk of epoxides themselves or compounds that can be metabolically activated to epoxides.
苯乙烯7,8 - 氧化物和环氧乙烷是广泛使用的具有基因毒性的大宗化学品,它们与职业暴露工人的潜在致癌风险有关。这两种环氧化物优先使鸟嘌呤的N - 7位的DNA烷基化,从而在暴露细胞的DNA中产生单链断裂和碱不稳定位点。为了研究人微粒体环氧化物水解酶(hmEH)在保护细胞免受苯乙烯7,8 - 氧化物和环氧乙烷的基因毒性方面的作用,我们在V79中国仓鼠细胞中表达了hmEH的cDNA。我们获得了许多表达具有功能活性的环氧化物水解酶的细胞克隆。其中,克隆92hmEH - V79对苯乙烯7,8 - 氧化物表现出特别高的酶促mEH活性(在细胞匀浆的9000×g上清液中测得,每毫克蛋白质每分钟转化10 nmol),这比在mock - 转染细胞中测定的活性高100倍,并且在人肝脏的mEH活性范围内。通过碱性洗脱技术测量,在92hmEH - V79细胞中,苯乙烯7,8 - 氧化物诱导的DNA单链断裂/碱不稳定位点(苯乙烯7,8 - 氧化物剂量范围为10μM至1 mM)与mock - 转染细胞相比显著更低。通过添加微粒体环氧化物水解酶的选择性抑制剂丙戊酰胺,可以消除92hmEH - V79细胞对苯乙烯7,8 - 氧化物基因毒性的保护作用。这些结果清楚地表明,92hmEH - V79细胞中hmEH对苯乙烯7,8 - 氧化物的代谢负责对苯乙烯7,8 - 氧化物基因毒性的保护。另一方面,在0.5 - 2.5 mM环氧乙烷的剂量范围内,用重组细胞系未观察到环氧化物水解酶表达对环氧乙烷诱导的DNA损伤的保护作用。因此,这种对环氧化物基因毒性保护作用的选择性似乎是预测环氧化物本身或可代谢活化成环氧化物的化合物的基因毒性风险时必须考虑的一个重要因素。