Drugan R C, Basile A S, Ha J H, Healy D, Ferland R J
Department of Psychology, University of New Hampshire, Durham 03824-3567, USA.
Brain Res Brain Res Protoc. 1997 Dec 1;2(1):69-74. doi: 10.1016/s1385-299x(97)00031-7.
Original observations of the effects of stress exposure on behavioral, physiological and pathological indices were documented in the mid 1960s [J.B. Overmier, Interference with avoidance behavior: failure to avoid traumatic shock, J. Exp. Psychol. 78 (1968) 340-343 [12]; J.B. Overmier, M.E.P. Seligman, Effects of inescapable shock upon subsequent escape and avoidance learning, J. Comp. Physiol. Psychol. 63 (1967) 28-33 [13]; M.E.P. Seligman, S.F. Maier, Failure to escape traumatic shock, J. Exp. Psychol. 74 (1967) 1-9 [15]; J.M. Weiss, Effects of coping responses on stress, J. Comp. Physiol. Psychol. 65 (1968) 251-260 [18]]. Studies employing the triadic design (e.g. escapable stress, yoked-inescapable stress and no stress) indicated that the deficits following stress exposure were not caused by stress per se, rather the uncontrollability of the stress was the critical determinant. In this paradigm, the first group (escape) receives exposure to an environmental event that it can "control" by performing a behavioral response. Stress control or coping behavior includes the ability to alter the onset, duration, intensity or pattern of an aversive experience [S.F. Maier, M.E.P. Seligman, Learned helplessness: theory and evidence, J. Exp. Psychol.: Gen. 105 (1976) 3-46 [10]]. The second group is "yoked" to its escape partner and receives the identical physical stressor as its escape counterpart, but there is no behavioral response that the yoked subject can make to alter the outcome. The third group (naive) receives no stress exposure and is either restrained in the experimental apparatus or remains in the home cage until subsequent testing. Researchers using this triadic design should be aware of the concerns of certain investigators [R.M. Church, Systematic effect of random error in the yoked control design, Psychol. Bull. 62 (1964) 122-131 [3]; E.A. Wasserman, Response bias in the yoked control procedure, Behav. Brain Sci. 11 (1988) 477-478 [17]] who have raised important issues about the validity of the yoked control design because of the possibility of systematic biases. For example, individual differences in stress reactivity may result in random error in the yoked control group. This point will be addressed further in Section 5. This procedure allows the investigator to analyze the contributions of the importance of psychological dynamics of stress on a variety of dependent measures including: behavioral, pharmacological, neurochemical and immunological indices.
20世纪60年代中期记录了对应激暴露对行为、生理和病理指标影响的原始观察结果[J.B. 奥弗米尔,对回避行为的干扰:未能避免创伤性休克,《实验心理学杂志》78 (1968) 340 - 343 [12];J.B. 奥弗米尔,M.E.P. 塞利格曼,不可逃避电击对随后逃避和回避学习的影响,《比较生理心理学杂志》63 (1967) 28 - 33 [13];M.E.P. 塞利格曼,S.F. 迈尔,未能逃避创伤性休克,《实验心理学杂志》74 (1967) 1 - 9 [15];J.M. 韦斯,应对反应对应激的影响,《比较生理心理学杂志》65 (1968) 251 - 260 [18]]。采用三元设计(例如可逃避应激、配对不可逃避应激和无应激)的研究表明,应激暴露后的缺陷并非由应激本身引起,而是应激的不可控性才是关键决定因素。在这个范式中,第一组(逃避组)暴露于一种环境事件,它可以通过执行一种行为反应来“控制”。应激控制或应对行为包括改变厌恶体验的开始、持续时间、强度或模式的能力[S.F. 迈尔,M.E.P. 塞利格曼,习得性无助:理论与证据,《实验心理学杂志:总论》105 (1976) 3 - 46 [10]]。第二组与逃避组的伙伴“配对”,并接受与逃避组相同的身体应激源,但配对组的受试者没有可以做出的行为反应来改变结果。第三组(天真组)不接受应激暴露,要么被限制在实验装置中,要么留在饲养笼中直到后续测试。使用这种三元设计的研究人员应该意识到某些研究者的担忧[R.M. 丘奇,配对控制设计中随机误差的系统效应,《心理学公报》62 (1964) 122 - 131 [3];E.A. 瓦瑟曼,配对控制程序中的反应偏差,《行为与脑科学》11 (1988) 477 - 478 [17]],他们由于存在系统偏差的可能性,对应对控制设计的有效性提出了重要问题。例如,应激反应性的个体差异可能导致配对控制组中的随机误差。这一点将在第5节中进一步讨论。这个程序使研究者能够分析应激心理动力学的重要性对包括行为、药理学、神经化学和免疫学指标在内的各种依赖测量指标的贡献。