Suppr超能文献

Effects of liposome-encapsulated bisphosphonates on acetylated LDL metabolism, lipid accumulation and viability of phagocyting cells.

作者信息

Ylitalo R, Mönkkönen J, Ylä-Herttuala S

机构信息

Department of Medical Biochemistry, University of Tampere, Finland.

出版信息

Life Sci. 1998;62(5):413-22. doi: 10.1016/s0024-3205(97)01134-x.

Abstract

Bisphosphonates, the drugs used for the treatment of e.g. osteoporosis, inhibit the development of experimental atherosclerosis. When encapsulated in liposomes, they also inactivate macrophages, which have a key role in atherogenesis. We studied the effects of three clinically used bisphosphonates, i.e. clodronate, etidronate and pamidronate, on 1) the viability of mouse peritoneal macrophages and macrophage-like RAW 264 cells, 2) the degradation of 125I-labeled acetylated LDL by RAW 264 cells, and 3) the formation of LDL-derived foam cells in vitro. Liposome-encapsulated clodronate and pamidronate, but not etidronate, decreased the fraction of viable peritoneal macrophages in a concentration-dependent manner, whereas RAW 264 cells were much more resistant to the cytotoxic effects of bisphosphonates. Preincubation with liposomal clodronate and etidronate inhibited in a concentration-dependent manner the degradation of acetylated LDL in RAW 264 cells, but non-cytotoxic concentrations of liposomal pamidronate had only a weak inhibitory effect. The inhibition was more pronounced by liposomal clodronate than by liposomal etidronate. At high concentrations (500 microg protein/ml) of acetylated and aggregated LDL, RAW 264 cells transformed to foam cells. Preincubation with liposomal clodronate and etidronate reduced the cellular accumulation of acetylated LDL-derived lipids, but the drugs had no effect on the lipid accumulation caused by aggregated LDL. The results suggest that liposomal clodronate and etidronate inhibit the activity of phagocyting cells in internalizing and degrading atherogenic modified LDL.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验